869 resultados para Visual and acoustic signaling
Resumo:
Visual communication seems to be widespread among nocturnal anurans, however, reports of these behaviors in many Neotropical species are lacking. Therefore, we gathered information collected during several sporadic field expeditions in central and southern Brazil with three nocturnal tree frogs: Aplastodiscus perviridis, Hypsiboas albopunctatus and H. bischoffi. These species displayed various aggressive behaviors, both visual and acoustic, towards other males. For A. perviridis we described arm lifting and leg kicking; for H. albopunctatus we described the advertisement and territorial calls, visual signalizations, including a previously unreported behavior (short leg kicking), and male-male combat; and for H. bischoffi we described the advertisement and fighting calls, toes and fingers trembling, leg lifting, and leg kicking. We speculate about the evolution of some behaviors and concluded that the use of visual signals among Neotropical anurans may be much more common than suggested by the current knowledge. © 2007 Departamento de Ciências Biológicas.
Resumo:
We studied the signaling, territorial, and courtship behaviors of the diurnal frog Hylodes asper. Visual and acoustic communication were used during intraspecific interactions involving males, females. and subadults. Hylodes aspcr has a complex visual communication system, of which foot-flagging is the most distinctive display observed in the repertoire of visual signals. The splash zone produced by the waterfalls and torrents creates a high, nearly constant, humidity near the streams, reducing the risk of desiccation which enables the diurnal activity of H. asper. Although the ambient sound pressure levels (SPL), measured at the calling sites, are similar to the SPL of the advertisement calls, the high-pitched calls of H, asper, are spectrally different from the noise produced by the water current. Thus. The ambient noise produced by the water current may not interfere significantly with the acoustic communication of this species. The noise and the nearly constant and high humidity produced by the torrents and waterfalls, along with the availability of Light, probably favored the evolution of contrasting colors and visual communication in H. asper: Males of H, aspcr excavate underwater chambers that are probably used to shelter the eggs and to prevent the clutch from being drifted downstream.
Resumo:
Covertly tracking mobile targets, either animal or human, in previously unmapped outdoor natural environments using off-road robotic platforms requires both visual and acoustic stealth. Whilst the use of robots for stealthy surveillance is not new, the majority only consider navigation for visual covertness. However, most fielded robotic systems have a non-negligible acoustic footprint arising from the onboard sensors, motors, computers and cooling systems, and also from the wheels interacting with the terrain during motion. This time-varying acoustic signature can jeopardise any visual covertness and needs to be addressed in any stealthy navigation strategy. In previous work, we addressed the initial concepts for acoustically masking a tracking robot’s movements as it travels between observation locations selected to minimise its detectability by a dynamic natural target and ensuring con- tinuous visual tracking of the target. This work extends the overall concept by examining the utility of real-time acoustic signature self-assessment and exploiting shadows as hiding locations for use in a combined visual and acoustic stealth framework.
Resumo:
The lateral amygdala (LA) receives information from auditory and visual sensory modalities, and uses this information to encode lasting memories that predict threat. One unresolved question about the amygdala is how multiple memories, derived from different sensory modalities, are organized at the level of neuronal ensembles. We previously showed that fear conditioning using an auditory conditioned stimulus (CS) was spatially allocated to a stable topography of neurons within the dorsolateral amygdala (LAd) (Bergstrom et al, 2011). Here, we asked how fear conditioning using a visual CS is topographically organized within the amygdala. To induce a lasting fear memory trace we paired either an auditory (2 khz, 55 dB, 20 s) or visual (1 Hz, 0.5 s on/0.5 s off, 35 lux, 20 s) CS with a mild foot shock unconditioned stimulus (0.6 mA, 0.5 s). To detect learning-induced plasticity in amygdala neurons, we used immunohistochemistry with an antibody for phosphorylated mitogen-activated protein kinase (pMAPK). Using a principal components analysis-based approach to extract and visualize spatial patterns, we uncovered two unique spatial patterns of activated neurons in the LA that were associated with auditory and visual fear conditioning. The first spatial pattern was specific to auditory cued fear conditioning and consisted of activated neurons topographically organized throughout the LAd and ventrolateral nuclei (LAvl) of the LA. The second spatial pattern overlapped for auditory and visual fear conditioning and was comprised of activated neurons located mainly within the LAvl. Overall, the density of pMAPK labeled cells throughout the LA was greatest in the auditory CS group, even though freezing in response to the visual and auditory CS was equivalent. There were no differences detected in the number of pMAPK activated neurons within the basal amygdala nuclei. Together, these results provide the first basic knowledge about the organizational structure of two different fear engrams within the amygdala and suggest they are dissociable at the level of neuronal ensembles within the LA
Resumo:
Recently, sonar signals and other sounds produced by cetaceans have been used for acoustic detection of individuals and groups in the wild. However, the detection probability ascertained by concomitant visual survey has not been demonstrated extensively. The finless porpoises (Neophocaena phocaenoides) have narrow band and high-frequency sonar signals, which are distinctive from background noises. Underwater sound monitoring with hydrophones (B&K8103) placed along the sides of a research vessel, concurrent with visual observations was conducted in the Yangtze River from Wuhan to Poyang Lake in 1998 in China. The peak to peak detection threshold was set at 133 dB re 1 mu Pa. With this threshold level, porpoises could be detected reliably within 300 m of the hydrophone. In a total of 774-km cruise, 588 finless porpoises were sighted by visual observation and 44 864 ultrasonic pulses were recorded by the acoustical observation system. The acoustic monitoring system could detect the presence of the finless porpoises 82% of the time. A false alarm in the system occurred with a frequency of 0.9%. The high-frequency acoustical observation is suggested as an effective method for field surveys of small cetaceans, which produce high-frequency sonar signals. (C) 2001 Acoustical Society of America.
Resumo:
The world is urbanizing rapidly with more than half of the global population now living in cities. Improving urban environments for the well-being of the increasing number of urban citizens is becoming one of the most important challenges of the 21st century. Even though it is common that city planners have visions of a ’good urban milieu’, those visions are concerning visual aesthetics or practical matters. The qualitative perspective of sound, such as sonic diversity and acoustic ecology are neglected aspects in architectural design. Urban planners and politicians are therefore largely unaware of the importance of sounds for the intrinsic quality of a place. Whenever environmental acoustics is on the agenda, the topic is noise abatement or noise legislation – a quantitative attenuation of sounds. Some architects may involve acoustical aspects in their work but sound design or acoustic design has yet to develop to a distinct discipline and be incorporated in urban planning.My aim was to investigate to what extent the urban soundscape is likely to improve if modern architectural techniques merge with principles of acoustics. This is an important, yet unexplored, research area. My study explores and analyses the acoustical aspects in urban development and includes interviews with practitioners in the field of urban acoustics, situated in New York City. My conclusion is that to achieve a better understanding of the human living conditions in mega-cities, there is a need to include sonic components into the holistic sense of urban development.
Resumo:
The purpose of this study was to determine whether or not blind children perseverate during a modified Piagetian A-not-B reaching task, with conditions that employ luminous AB targets and acoustic AB targets. Ten congenitally blind children, ages 1-4 years, with residual vision for light, took part in this study. Behavioral and kinematic data were computed for participants' reaches, performed in six A trials and in two B trials, in both stimulus conditions. All of the children perseverated in the luminous condition, and none of them perseverated in the condition using acoustic targets. The children tilted their heads in the direction of the target as they reached towards it. However, this coupling action (head-reaching) occurred predominantly in the A trials in the acoustic condition. In the luminous condition, in contrast to the acoustic condition, the children took longer times to initiate the reaching movement. Also, in the luminous condition, the children explored the target surroundings, unlike the acoustic condition, in which they reached straight ahead. For these blind children, sound was more relevant to reaching than was the luminous stimulus. The luminous input caused perseveration in congenitally blind children in a similar way that has been reported in the literature for typically-developing, sighted infants, ages 8-12 months, performing A-not-B tasks with visual inputs. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Edges are crucial for the formation of coherent objects from sequential sensory inputs within a single modality. Moreover, temporally coincident boundaries of perceptual objects across different sensory modalities facilitate crossmodal integration. Here, we used functional magnetic resonance imaging in order to examine the neural basis of temporal edge detection across modalities. Onsets of sensory inputs are not only related to the detection of an edge but also to the processing of novel sensory inputs. Thus, we used transitions from input to rest (offsets) as convenient stimuli for studying the neural underpinnings of visual and acoustic edge detection per se. We found, besides modality-specific patterns, shared visual and auditory offset-related activity in the superior temporal sulcus and insula of the right hemisphere. Our data suggest that right hemispheric regions known to be involved in multisensory processing are crucial for detection of edges in the temporal domain across both visual and auditory modalities. This operation is likely to facilitate cross-modal object feature binding based on temporal coincidence. Hum Brain Mapp, 2008. (c) 2008 Wiley-Liss, Inc.
Resumo:
Fisheries independent data on relatively unstudied nekton communities were used to explore the efficacy of new tools to be applied in the investigation of shallow coastal coral reef habitats. These data obtained through concurrent diver visual and acoustic surveys provided descriptions of spatial community distribution patterns across seasonal temporal scales in a previously undocumented region. Fish density estimates by both diver and acoustic methodologies showed a general agreement in ability to detect distributional patterns across reef tracts, though magnitude of density estimates were different. Fish communities in southeastern Florida showed significant trends in spatial distribution and seasonal abundance, with higher estimates of biomass obtained in the dry season. Further, community composition shifted across reef tracts and seasons as a function of the movements of several key reef species.
Resumo:
In this article, we take a close look at the literacy demands of one task from the ‘Marvellous Micro-organisms Stage 3 Life and Living’ Primary Connections unit (Australian Academy of Science, 2005). One lesson from the unit, ‘Exploring Bread’, (pp 4-8) asks students to ‘use bread labels to locate ingredient information and synthesise understanding of bread ingredients’. We draw upon a framework offered by the New London Group (2000), that of linguistic, visual and spatial design, to consider in more detail three bread wrappers and from there the complex literacies that students need to interrelate to undertake the required task. Our findings are that although bread wrappers are an example of an everyday science text, their linguistic, visual and spatial designs and their interrelationship are not trivial. We conclude by reinforcing the need for teachers of science to also consider how the complex design elements of everyday science texts and their interrelated literacies are made visible through instructional practice.
Resumo:
Failing injectors are one of the most common faults in diesel engines. The severity of these faults could have serious effects on diesel engine operations such as engine misfire, knocking, insufficient power output or even cause a complete engine breakdown. It is thus essential to prevent such faults from occurring by monitoring the condition of these injectors. In this paper, the authors present the results of an experimental investigation on identifying the signal characteristics of a simulated incipient injector fault in a diesel engine using both in-cylinder pressure and acoustic emission (AE) techniques. A time waveform event driven synchronous averaging technique was used to minimize or eliminate the effect of engine speed variation and amplitude fluctuation. It was found that AE is an effective method to detect the simulated injector fault in both time (crank angle) and frequency (order) domains. It was also shown that the time domain in-cylinder pressure signal is a poor indicator for condition monitoring and diagnosis of the simulated injector fault due to the small effect of the simulated fault on the engine combustion process. Nevertheless, good correlations between the simulated injector fault and the lower order components of the enveloped in-cylinder pressure spectrum were found at various engine loading conditions.