992 resultados para Visual Cortex
Resumo:
Pathological inattention following parietal damage causes perceptual impairments for visual stimuli in the contralesional hemifield. Here we used functional magnetic resonance imaging (fMRI) to examine visual cortex activity in parietal patients as they performed a spatial attention task. Righthemisphere patients and healthy controls viewed counterphasing checkerboards in which coloured targets appeared briefly within the contralesional and ipsilesional hemifields. In separate fMRI runs participants focused their attention covertiy on the left or right hemifield, or on both hemifields concurrentiy. They were required to detect coloured targets that appeared briefly within the attended hemifield(s), and to withhold responses to distractor stimuli. Neural activit}' was significantly attenuated in early visual areas within the damaged hemisphere. Crucially, although attention significantiy modulated early visual activit}' within the intact (left) hemisphere, there was relatively littie modulation of activity within the affected hemisphere. Our findings suggest that parietal lesions alter early cortical responses to contralesional visual inputs.
Resumo:
The basal dendritic arbors of 442 supragranular pyramidal cells in visual cortex of the marmoset monkey were compared by fractal analyses. As detailed in a previous study,(1) individual cells were injected with Lucifer Yellow and processed for a DAB reaction product. The basal dendritic arbors were drawn, in the tangential plane, and the fractal dimension (D) determined by the dilation method. The fractal dimensions were compared between cells in ten cortical areas containing cells involved in visual processing, including the primary visual area (Vi), the second visual area (V2), the dorsoanterior area (DA), the dorsomedial area (DM), the dorsolateral. area (DL), the middle temporal area (MT), the posterior parietal area (PP), the fundus of the superior temporal area (FST) and the caudal and rostral subdivisions of inferotemporal cortex (ITc and ITr, respectively). Of 45 pairwise interareal comparisons of the fractal dimension of neurones, 20 were significantly different. Moreover, comparison of data according to previously published visual processing pathways revealed a trend for cells with greater fractal dimensions in higher cortical areas. Comparison of the present results with those in homologous cortical areas in the macaque monkey(2) revealed some similarities between the two species. The similarity in the trends of D values of cells in both species may reflect developmental features which, result in different functional attributes.
Resumo:
The basal dendritic arbors of over 500-layer III pyramidal neurones of the macaque cortex were compared by fractal analyses, which provides a measure of the space filling (or branching pattern) of dendritic arbors. Fractal values (D) of individual cells were compared between the cytochrome oxidase (CO)-rich blobs and CO-poor interblobs, of middle and upper layer III, and between sublaminae, in the primary visual area (Vi). These data were compared with those in the CO compartments in the second visual area (V2), and seven other extrastriate cortical areas. (V4, MT, LIP, 7a, TEO, TE and STP). There were significant differences in the fractal dimensions, and therefore the dendritic branching patterns, of cells in striate and extrastriate areas. Of the 55 possible pairwise comparisons of fractal dimension of neurones in different cortical areas (or CO compartments), 39 proved to be significantly different. The markedly different morphologies of pyramidal cells in the different cortical areas may be one of the features that determine the functional signatures of these cells by influencing the number of inputs received by, and propagation of potentials through, their dendritic arbors.
Resumo:
Recent studies have revealed marked variation in pyramidal cell structure in the visual cortex of macaque and marmoset monkeys. In particular, there is a systematic increase in the size of, and number of spines in, the arbours of pyramidal cells with progression through occipitotemporal (OT) visual areas. In the present study we extend the basis for comparison by investigating pyramidal cell structure in visual areas of the nocturnal owl monkey. As in the diurnal macaque and marmoset monkeys, pyramidal cells became progressively larger and more spinous with anterior progression through OT visual areas. These data suggest that: 1. the trend for more complex pyramidal cells with anterior progression through OT visual areas is a fundamental organizational principle in primate cortex; 2. areal specialization of the pyramidal cell phenotype provides an anatomical substrate for the reconstruction of the visual scene in OT areas; 3. evolutionary specialization of different aspects of visual processing may determine the extent of interareal variation in the pyramidal cell phenotype in different species; and 4. pyramidal cell structure is not necessarily related to brain size. Crown Copyright (C) 2003 Published by Elsevier Science Ltd on behalf of IBRO. All rights reserved.
Resumo:
The branching structure of neurones is thought to influence patterns of connectivity and how inputs are integrated within the arbor. Recent studies have revealed a remarkable degree of variation in the branching structure of pyramidal cells in the cerebral cortex of diurnal primates, suggesting regional specialization in neuronal function. Such specialization in pyramidal cell structure may be important for various aspects of visual function, such as object recognition and color processing. To better understand the functional role of regional variation in the pyramidal cell phenotype in visual processing, we determined the complexity of the dendritic branching pattern of pyramidal cells in visual cortex of the nocturnal New World owl monkey. We used the fractal dilation method to quantify the branching structure of pyramidal cells in the primary visual area (V1), the second visual area (V2) and the caudal and rostral subdivisions of inferotemporal cortex (ITc and ITr, respectively), which are often associated with color processing. We found that, as in diurnal monkeys, there was a trend for cells of increasing fractal dimension with progression through these cortical areas. The increasing complexity paralleled a trend for increasing symmetry. That we found a similar trend in both diurnal and nocturnal monkeys suggests that it was a feature of a common anthropoid ancestor.
Resumo:
fMRI, color, colour, velocity, speed, contrast, cone contrast, V1, V4, hV4, MT, MT+, V3A, BOLD, Retinotopic Mapping, Contrast Response Function
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2015
Resumo:
Otto-von-Guericke-Universtität Magdeburg, Fakultät für Naturwissenschaften, Univ., Dissertation, 2016
Resumo:
Functional imaging with intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) is demonstrated. Images were acquired at 3 Tesla using a standard Stejskal-Tanner diffusion-weighted echo-planar imaging sequence with multiple b-values. Cerebro-spinal fluid signal, which is highly incoherent, was suppressed with an inversion recovery preparation pulse. IVIM microvascular perfusion parameters were calculated according to a two-compartment (vascular and non-vascular) diffusion model. The results obtained in 8 healthy human volunteers during visual stimulation are presented. The IVIM blood flow related parameter fD* increased 170% during stimulation in the visual cortex, and 70% in the underlying white matter.
Resumo:
After the landmark studies reporting changes in the cerebral metabolic rate of glucose (CMRGlc ) in excess of those in oxygen (CMRO2 ) during physiological stimulation, several studies have examined the fate of the extra carbon taken up by the brain, reporting a wide range of changes in brain lactate from 20% to 250%. The present study reports functional magnetic resonance spectroscopy measurements at 7 Tesla using the enhanced sensitivity to study a small cohort (n = 6). Small increases in lactate (19% ± 4%, P < 0.05) and glutamate (4% ± 1%, P < 0.001) were seen within the first 2 min of activation. With the exception of glucose (12% ± 5%, P < 0.001), no other metabolite concentration changes beyond experimental error were significantly observed. Therefore, the present study confirms that lactate and glutamate changes during physiological stimulation are small (i.e. below 20%) and shows that the increased sensitivity allows reproduction of previous results with fewer subjects. In addition, the initial rate of glutamate and lactate concentration increases implies an increase in CMRO2 that is slightly below that of CMRGlc during the first 1-2 min of activation.
Resumo:
Neurons projecting transitorily into the corpus callosum from area 17 of the cat were retrogradely labeled by the fluorescent tracer Fast Blue (FB) injected into contralateral areas 17 and 18 on postnatal days 1-5. During the second postnatal month these neurons were still labeled by the early injection, although they had eliminated their callosal axon. At this time, 15-20% of these neurons could be retrogradely relabeled by injections of Diamidino Yellow (DY) into ipsilateral areas 17 and 18, but few or none by similar injections in the other areas that receive from area 17 (19, 21a, PMLS, 20a, 20b, DLS). Similarly, area 17 neurons projecting transitorily to contralateral area PMLS during the first postnatal week could be relabeled by DY injections in ipsilateral areas 17 and 18 but not in PMLS. Already around birth, many transitorily callosal neurons in area 17 send bifurcating axons both to contralateral areas 17 and 18 and ipsilateral area 18. It is probable that during postnatal development some of these neurons selectively eliminate their callosal axon collaterals and maintain the projection to ipsilateral area 18. In fact, some transitorily callosal neurons in area 17 can be double-labeled by simultaneous perinatal injections of FB in contralateral areas 17 and 18 and of a new long-lasting retrograde tracer, rhodamine-conjugated latex microspheres, in ipsilateral area 18. The same neurons can then be relabeled by reinjecting ipsilateral area 18 with DY during the second postnatal month. This finding, however, does not exclude the possibility that some transitorily callosal neurons send an axon to ipsilateral area 18 after eliminating their callosal axon. In conclusion, area 17 neurons that project transitorily through the corpus callosum later participate, probably permanently, in ipsilateral corticocortical projections but selectively to areas 17-18. The mechanism responsible for this selectivity is unknown, but it may be related to the differential radial distribution (i.e., to birth date) of area 17 neurons engaged in the various corticocortical projections. The problems raised by the use of long-lasting retrograde fluorescent tracers in neurodevelopmental studies and by the quantification of results of double- and triple-labeling paradigms are also discussed.
Resumo:
The distribution of parvalbumin (PV), calretinin (CR), and calbindin (CB) immunoreactive neurons was studied with the help of an image analysis system (Vidas/Zeiss) in the primary visual area 17 and associative area 18 (Brodmann) of Alzheimer and control brains. In neither of these areas was there a significant difference between Alzheimer and control groups in the mean number of PV, CR, or CB immunoreactive neuronal profiles, counted in a cortical column going from pia to white matter. Significant differences in the mean densities (numbers per square millimeter of cortex) of PV, CR, and CB immunoreactive neuronal profiles were not observed either between groups or areas, but only between superficial, middle, and deep layers within areas 17 and 18. The optical density of the immunoreactive neuropil was also similar in Alzheimer and controls, correlating with the numerical density of immunoreactive profiles in superficial, middle, and deep layers. The frequency distribution of neuronal areas indicated significant differences between PV, CR, and CB immunoreactive neuronal profiles in both areas 17 and 18, with more large PV than CR and CB positive profiles. There were also significantly more small and less large PV and CR immunoreactive neuronal profiles in Alzheimer than in controls. Our data show that, although the brain pathology is moderate to severe, there is no prominent decrease of PV, CR and CB positive neurons in the visual cortex of Alzheimer brains, but only selective changes in neuronal perikarya.
Resumo:
Evidence of multisensory interactions within low-level cortices and at early post-stimulus latencies has prompted a paradigm shift in conceptualizations of sensory organization. However, the mechanisms of these interactions and their link to behavior remain largely unknown. One behaviorally salient stimulus is a rapidly approaching (looming) object, which can indicate potential threats. Based on findings from humans and nonhuman primates suggesting there to be selective multisensory (auditory-visual) integration of looming signals, we tested whether looming sounds would selectively modulate the excitability of visual cortex. We combined transcranial magnetic stimulation (TMS) over the occipital pole and psychophysics for "neurometric" and psychometric assays of changes in low-level visual cortex excitability (i.e., phosphene induction) and perception, respectively. Across three experiments we show that structured looming sounds considerably enhance visual cortex excitability relative to other sound categories and white-noise controls. The time course of this effect showed that modulation of visual cortex excitability started to differ between looming and stationary sounds for sound portions of very short duration (80 ms) that were significantly below (by 35 ms) perceptual discrimination threshold. Visual perceptions are thus rapidly and efficiently boosted by sounds through early, preperceptual and stimulus-selective modulation of neuronal excitability within low-level visual cortex.