6 resultados para Vissim
Resumo:
In urban areas, interchange spacing and the adequacy of design for weaving, merge, and diverge areas can significantly influence available capacity. Traffic microsimulation tools allow detailed analyses of these critical areas in complex locations that often yield results that differ from the generalized approach of the Highway Capacity Manual. In order to obtain valid results, various inputs should be calibrated to local conditions. This project investigated basic calibration factors for the simulation of traffic conditions within an urban freeway merge/diverge environment. By collecting and analyzing urban freeway traffic data from multiple sources, specific Iowa-based calibration factors for use in VISSIM were developed. In particular, a repeatable methodology for collecting standstill distance and headway/time gap data on urban freeways was applied to locations throughout the state of Iowa. This collection process relies on the manual processing of video for standstill distances and individual vehicle data from radar detectors to measure the headways/time gaps. By comparing the data collected from different locations, it was found that standstill distances vary by location and lead-follow vehicle types. Headways and time gaps were found to be consistent within the same driver population and across different driver populations when the conditions were similar. Both standstill distance and headway/time gap were found to follow fairly dispersed and skewed distributions. Therefore, it is recommended that microsimulation models be modified to include the option for standstill distance and headway/time gap to follow distributions as well as be set separately for different vehicle classes. In addition, for the driving behavior parameters that cannot be easily collected, a sensitivity analysis was conducted to examine the impact of these parameters on the capacity of the facility. The sensitivity analysis results can be used as a reference to manually adjust parameters to match the simulation results to the observed traffic conditions. A well-calibrated microsimulation model can enable a higher level of fidelity in modeling traffic behavior and serve to improve decision making in balancing need with investment.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes
Resumo:
In work-zone configurations where lane drops are present, merging of traffic at the taper presents an operational concern. In addition, as flow through the work zone is reduced, the relative traffic safety of the work zone is also reduced. Improving work-zone flow-through merge points depends on the behavior of individual drivers. By better understanding driver behavior, traffic control plans, work zone policies, and countermeasures can be better targeted to reinforce desirable lane closure merging behavior, leading to both improved safety and work-zone capacity. The researchers collected data for two work-zone scenarios that included lane drops with one scenario on the Interstate and the other on an urban arterial roadway. The researchers then modeled and calibrated these scenarios in VISSIM using real-world speeds, travel times, queue lengths, and merging behaviors (percentage of vehicles merging upstream and near the merge point). Once built and calibrated, the researchers modeled strategies for various countermeasures in the two work zones. The models were then used to test and evaluate how various merging strategies affect safety and operations at the merge areas in these two work zones.
Resumo:
Microscopic traffic-simulation tools are increasingly being applied to evaluate the impacts of a wide variety of intelligent transport, systems (ITS) applications and other dynamic problems that are difficult to solve using traditional analytical models. The accuracy of a traffic-simulation system depends highly on the quality of the traffic-flow model at its core, with the two main critical components being the car-following and lane-changing models. This paper presents findings from a comparative evaluation of car-following behavior in a number of traffic simulators [advanced interactive microscopic simulator for urban and nonurban networks (AIMSUN), parallel microscopic simulation (PARAMICS), and Verkehr in Statiten-simulation (VISSIM)]. The car-following algorithms used in these simulators have been developed from a variety of theoretical backgrounds and are reported to have been calibrated on a number of different data sets. Very few independent studies have attempted to evaluate the performance of the underlying algorithms based on the same data set. The results reported in this study are based on a car-following experiment that used instrumented vehicles to record the speed and relative distance between follower and leader vehicles on a one-lane road. The experiment was replicated in each tool and the simulated car-following behavior was compared to the field data using a number of error tests. The results showed lower error values for the Gipps-based models implemented in AIMSUN and similar error values for the psychophysical spacing models used in VISSIM and PARAMICS. A qualitative drift and goal-seeking behavior test, which essentially shows how the distance headway between leader and follower vehicles should oscillate around a stable distance, also confirmed the findings.
Resumo:
Highways are generally designed to serve a mixed traffic flow that consists of passenger cars, trucks, buses, recreational vehicles, etc. The fact that the impacts of these different vehicle types are not uniform creates problems in highway operations and safety. A common approach to reducing the impacts of truck traffic on freeways has been to restrict trucks to certain lane(s) to minimize the interaction between trucks and other vehicles and to compensate for their differences in operational characteristics. ^ The performance of different truck lane restriction alternatives differs under different traffic and geometric conditions. Thus, a good estimate of the operational performance of different truck lane restriction alternatives under prevailing conditions is needed to help make informed decisions on truck lane restriction alternatives. This study develops operational performance models that can be applied to help identify the most operationally efficient truck lane restriction alternative on a freeway under prevailing conditions. The operational performance measures examined in this study include average speed, throughput, speed difference, and lane changes. Prevailing conditions include number of lanes, interchange density, free-flow speeds, volumes, truck percentages, and ramp volumes. ^ Recognizing the difficulty of collecting sufficient data for an empirical modeling procedure that involves a high number of variables, the simulation approach was used to estimate the performance values for various truck lane restriction alternatives under various scenarios. Both the CORSIM and VISSIM simulation models were examined for their ability to model truck lane restrictions. Due to a major problem found in the CORSIM model for truck lane modeling, the VISSIM model was adopted as the simulator for this study. ^ The VISSIM model was calibrated mainly to replicate the capacity given in the 2000 Highway Capacity Manual (HCM) for various free-flow speeds under the ideal basic freeway section conditions. Non-linear regression models for average speed, throughput, average number of lane changes, and speed difference between the lane groups were developed. Based on the performance models developed, a simple decision procedure was recommended to select the desired truck lane restriction alternative for prevailing conditions. ^
Resumo:
Optimization of adaptive traffic signal timing is one of the most complex problems in traffic control systems. This dissertation presents a new method that applies the parallel genetic algorithm (PGA) to optimize adaptive traffic signal control in the presence of transit signal priority (TSP). The method can optimize the phase plan, cycle length, and green splits at isolated intersections with consideration for the performance of both the transit and the general vehicles. Unlike the simple genetic algorithm (GA), PGA can provide better and faster solutions needed for real-time optimization of adaptive traffic signal control. ^ An important component in the proposed method involves the development of a microscopic delay estimation model that was designed specifically to optimize adaptive traffic signal with TSP. Macroscopic delay models such as the Highway Capacity Manual (HCM) delay model are unable to accurately consider the effect of phase combination and phase sequence in delay calculations. In addition, because the number of phases and the phase sequence of adaptive traffic signal may vary from cycle to cycle, the phase splits cannot be optimized when the phase sequence is also a decision variable. A "flex-phase" concept was introduced in the proposed microscopic delay estimation model to overcome these limitations. ^ The performance of PGA was first evaluated against the simple GA. The results show that PGA achieved both faster convergence and lower delay for both under- or over-saturated traffic conditions. A VISSIM simulation testbed was then developed to evaluate the performance of the proposed PGA-based adaptive traffic signal control with TSP. The simulation results show that the PGA-based optimizer for adaptive TSP outperformed the fully actuated NEMA control in all test cases. The results also show that the PGA-based optimizer was able to produce TSP timing plans that benefit the transit vehicles while minimizing the impact of TSP on the general vehicles. The VISSIM testbed developed in this research provides a powerful tool to design and evaluate different TSP strategies under both actuated and adaptive signal control. ^