997 resultados para Visible lasers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimony based glasses have been investigated for the first time regarding the possibility of holographic data storage using visible lasers sources. Changes in both refractive index and the absorption coefficient were measured using a holographic setup. The modulation of the optical constants is reversible by heat treatment. Bragg gratings were written under visible light of an Ar laser and erased thermally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimony based glasses have been investigated for the first time regarding the possibility of holographic data storage using visible lasers sources. Changes in both refractive index and the absorption coefficient were measured using a holographic setup. The modulation of the optical constants is reversible by heat treatment. Bragg gratings were written under visible light of an Ar laser and erased thermally.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The damage mechanisms and micromachining of 6H SiC are studied by using femtosecond laser pulses at wavelengths between near infrared (NIR) and near ultraviolet (NUV) delivered from an optical parametric amplifier (OPA). Our experimental results indicate that high quality microstructures can be fabricated in SiC crystals. On the basis of the dependence of the ablated area and the laser pulse energy, the threshold fluence of SiC is found to increase with the incident laser wavelength in the visible region, while it remains almost constant for the NIR laser. For the NIR laser pulses, both photoionization and impact ionization play important roles in electronic excitation, while for visible lasers, photoionization plays a more important role.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a novel phenomenon in GeS2-In2S3-CsI chalcohalide glass doped with Tm3+ ions. Under irradiation with an 808 nm laser diode, a bright red emission centered at 700 nm is observed for the first time in this glass. The log-log correlation between integrated emission intensity and pump power reveals that a two-photon absorption process is involved in the phenomenon, suggesting that the F-3(3,2) -> H-3(6) transition of Tm3+ ions is responsible for the appearance of the red emission. The results indicate that the indium (In) based chalcohalide glass containing Tm3+ ions is expected to find applications in visible lasers, high density optical storage and three-dimensional color displays. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Without introducing concentration quenching phenomenon, a few wt% of Tb3+ and Yb3+ ions were doped into a group of easily-fiberized tellurite glasses characterized by loose polyhedron structures and rich interstitial positions. Intense green upconversion emission from Tb3+ ions centered at 539 nm due to transition 5D4→7F5 was observed by direct excitation of Yb3+ ions with a laser diode at 976 nm. Optimizing the concentration ratio of Tb3+/Yb3+, a tellurite glass with composition of 80TeO2-10ZnO-10Na2O (mol%)+1.0wt% Tb2O3+3.0wt% Yb2O3 was found to present the highest green light intensity and therefore is especially suitable for efficient green fiber laser development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Raman spectroscopy has been applied to characterize fiber dyes and determine the discriminating ability of the method. Black, blue, and red acrylic, cotton, and wool samples were analyzed. Four excitation sources were used to obtain complementary responses in the case of fluorescent samples. Fibers that did not provide informative spectra using a given laser were usually detected using another wavelength. For any colored acrylic, the 633-nm laser did not provide Raman information. The 514-nm laser provided the highest discrimination for blue and black cotton, but half of the blue cottons produced noninformative spectra. The 830-nm laser exhibited the highest discrimination for red cotton. Both visible lasers provided the highest discrimination for black and blue wool, and NIR lasers produced remarkable separation for red and black wool. This study shows that the discriminating ability of Raman spectroscopy depends on the fiber type, color, and the laser wavelength.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of band-edge lasing from dye-doped chiral nematic liquid crystals has thus far been largely restricted to visible wavelengths. In this paper, a wide range of commercially available laser dyes are examined for their suitability as infrared emitters within a chiral nematic host. Problems such as poor solubility and reduced quantum efficiencies are overcome, and successful band-edge lasing is demonstrated within the range of 735-850 nm, using the dyes LD800, HITC-P and DOTC-P. This paper also reports on progress towards widely tuneable liquid crystal lasers, capable of emission in the region 460- 850 nm. Key to this is the use of common pump source, capable of simultaneously exciting all of the dyes (both infrared and visible) that are present within the system. Towards this aim, we successfully demonstrate near-infrared lasing (800 nm) facilitated by Förster energy transfer between the visible dye DCM, and the infra-red dye LD800, enabling pump wavelengths anywhere between 420 and 532 nm to be used. These results demonstrate that small and low-cost tuneable visible to near-infrared laser sources are achievable, using a single common pump source. Such devices are envisaged to have wide-ranging applications including medical imaging (including optical coherence tomography), point-of-care optical medical diagnostics (such as flow cytometry), telecommunications, and optical signatures for security coatings. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of band-edge lasing from dye-doped chiral nematic liquid crystals has thus far been largely restricted to visible wavelengths. In this paper, a wide range of commercially available laser dyes are examined for their suitability as infrared emitters within a chiral nematic host. Problems such as poor solubility and reduced quantum efficiencies are overcome, and successful band-edge lasing is demonstrated within the range of 735-850 nm, using the dyes LD800, HITC-P and DOTC-P. This paper also reports on progress towards widely tuneable liquid crystal lasers, capable of emission in the region 460- 850 nm. Key to this is the use of common pump source, capable of simultaneously exciting all of the dyes (both infrared and visible) that are present within the system. Towards this aim, we successfully demonstrate near-infrared lasing (800 nm) facilitated by Förster energy transfer between the visible dye DCM, and the infra-red dye LD800, enabling pump wavelengths anywhere between 420 and 532 nm to be used. These results demonstrate that small and low-cost tuneable visible to near-infrared laser sources are achievable, using a single common pump source. Such devices are envisaged to have wide-ranging applications including medical imaging (including optical coherence tomography), point-of-care optical medical diagnostics (such as flow cytometry), telecommunications, and optical signatures for security coatings. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

650 nm-range AlGaInP multi-quantum well (MQW) laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) have been studied and the results are presented in this paper. Threshold current density of broad area contact laser diodes can be as low as 350 A/cm(2). Laser diodes with buried-ridge strip waveguide structures were made, threshold currents and differential efficiencies are (22-40) mA and (0.2-0.7) mW/mA, respectively. Typical output power for the laser diodes is 5 mW, maximum output power of 15 mW has been obtained. Their operation temperature can be up to 90 degrees C under power of 5 mW. After operating under 90 degrees C and 5 mW for 72 hrs, the average increments for the threshold currents of the lasers at 25 degrees C and the operation currents at 5 mW (at 25 degrees C) are (2-3) mA and (3-5) mA, respectively. Reliability tests showed that no obvious degradation was observed after 1400 hours of CW operation under 50 degrees C and 2.5 mW.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

650 nm-range AlGaInP multi-quantum well (MQW) laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) have been studied and the results are presented in this paper. Threshold current density of broad area contact laser diodes can be as low as 350 A/cm(2). Laser diodes with buried-ridge strip waveguide structures were made, threshold currents and differential efficiencies are (22-40) mA and (0.2-0.7) mW/mA, respectively. Typical output power for the laser diodes is 5 mW, maximum output power of 15 mW has been obtained. Their operation temperature can be up to 90 degrees C under power of 5 mW. After operating under 90 degrees C and 5 mW for 72 hrs, the average increments for the threshold currents of the lasers at 25 degrees C and the operation currents at 5 mW (at 25 degrees C) are (2-3) mA and (3-5) mA, respectively. Reliability tests showed that no obvious degradation was observed after 1400 hours of CW operation under 50 degrees C and 2.5 mW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly stable, branched gold nanoworms are formed spontaneously in an acetamide-based room temperature molten solvent without any additional external stabilizing or aggregating agent. The nanoworms can be anchored onto solid substrates such as indium tin oxide (ITO) without any change in morphology. The anchored nanoworms are explored as substrates for surface enhanced Raman scattering (SERS) studies using non-fluorescent 4-mercaptobenzoic acid (4-MBA) and fluorescent rhodamine 6G (R6G) as probe molecules. The anchored nanostructured particles respond to near IR (1064 nm) as well as visible (785, 632.8 and 514 nm) excitation lasers and yield good surface enhancement in Raman signals. Enhancement factors of the order 10(6)-10(7) are determined for the analytes using a 1064 nm excitation source. Minimum detection limits based on adsorption from ethanolic solutions of 1028 M 4-MBA and aqueous solutions of 1027 M R6G are achieved. Experimental Raman frequencies and frequencies estimated by DFT calculations are in fairly good agreement. SERS imaging of the nanostructures suggests that the substrates comprising of three dimensional, highly interlinked particles are more suited than particles fused in one dimension. The high SERS activity of the branched nanoworms may be attributed to both electromagnetic and charge transfer effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Er3+/Yb3+-codoped bismuthate glasses for developing potential upconversion lasers have been fabricated and characterized. The optimal Yb3+ doping content was investigated in the glasses with different Yb3+-Er3+ concentration ratios and the optimal Yb3+-Er3+ concentration ratio is 5:1. Under 975 nm excitation, intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Er3+-doped lithium-barium-lead-bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 3.05 x 10(-20) cm(2), Omega(4) = 0.95 x 10(-20) cm(2), and Omega(6) = 0.39 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the intense upconversion processes. The intense upconversion luminescence of Er3+-doped lithium-barium-lead-bismuth glass may be a potentially useful material for developing upconversion optical devices. (c) 2004 Elsevier B.V. All rights reserved.