5 resultados para Viscoélasticité
Resumo:
L’accident thromboembolique veineux, tel que la thrombose veineuse profonde (TVP) ou thrombophlébite des membres inférieurs, est une pathologie vasculaire caractérisée par la formation d’un caillot sanguin causant une obstruction partielle ou totale de la lumière sanguine. Les embolies pulmonaires sont une complication mortelle des TVP qui surviennent lorsque le caillot se détache, circule dans le sang et produit une obstruction de la ramification artérielle irriguant les poumons. La combinaison d’outils et de techniques d’imagerie cliniques tels que les règles de prédiction cliniques (signes et symptômes) et les tests sanguins (D-dimères) complémentés par un examen ultrasonographique veineux (test de compression, écho-Doppler), permet de diagnostiquer les premiers épisodes de TVP. Cependant, la performance de ces outils diagnostiques reste très faible pour la détection de TVP récurrentes. Afin de diriger le patient vers une thérapie optimale, la problématique n’est plus basée sur la détection de la thrombose mais plutôt sur l’évaluation de la maturité et de l’âge du thrombus, paramètres qui sont directement corrélées à ses propriétés mécaniques (e.g. élasticité, viscosité). L’élastographie dynamique (ED) a récemment été proposée comme une nouvelle modalité d’imagerie non-invasive capable de caractériser quantitativement les propriétés mécaniques de tissus. L’ED est basée sur l’analyse des paramètres acoustiques (i.e. vitesse, atténuation, pattern de distribution) d’ondes de cisaillement basses fréquences (10-7000 Hz) se propageant dans le milieu sondé. Ces ondes de cisaillement générées par vibration externe, ou par source interne à l’aide de la focalisation de faisceaux ultrasonores (force de radiation), sont mesurées par imagerie ultrasonore ultra-rapide ou par résonance magnétique. Une méthode basée sur l’ED adaptée à la caractérisation mécanique de thromboses veineuses permettrait de quantifier la sévérité de cette pathologie à des fins d’amélioration diagnostique. Cette thèse présente un ensemble de travaux reliés au développement et à la validation complète et rigoureuse d’une nouvelle technique d’imagerie non-invasive élastographique pour la mesure quantitative des propriétés mécaniques de thromboses veineuses. L’atteinte de cet objectif principal nécessite une première étape visant à améliorer les connaissances sur le comportement mécanique du caillot sanguin (sang coagulé) soumis à une sollicitation dynamique telle qu’en ED. Les modules de conservation (comportement élastique, G’) et de perte (comportement visqueux, G’’) en cisaillement de caillots sanguins porcins sont mesurés par ED lors de la cascade de coagulation (à 70 Hz), et après coagulation complète (entre 50 Hz et 160 Hz). Ces résultats constituent les toutes premières mesures du comportement dynamique de caillots sanguins dans une gamme fréquentielle aussi étendue. L’étape subséquente consiste à mettre en place un instrument innovant de référence (« gold standard »), appelé RheoSpectris, dédié à la mesure de la viscoélasticité hyper-fréquence (entre 10 Hz et 1000 Hz) des matériaux et biomatériaux. Cet outil est indispensable pour valider et calibrer toute nouvelle technique d’élastographie dynamique. Une étude comparative entre RheoSpectris et la rhéométrie classique est réalisée afin de valider des mesures faites sur différents matériaux (silicone, thermoplastique, biomatériaux, gel). L’excellente concordance entre les deux technologies permet de conclure que RheoSpectris est un instrument fiable pour la mesure mécanique à des fréquences difficilement accessibles par les outils actuels. Les bases théoriques d’une nouvelle modalité d’imagerie élastographique, nommée SWIRE (« shear wave induced resonance dynamic elastography »), sont présentées et validées sur des fantômes vasculaires. Cette approche permet de caractériser les propriétés mécaniques d’une inclusion confinée (e.g. caillot sanguin) à partir de sa résonance (amplification du déplacement) produite par la propagation d’ondes de cisaillement judicieusement orientées. SWIRE a également l’avantage d’amplifier l’amplitude de vibration à l’intérieur de l’hétérogénéité afin de faciliter sa détection et sa segmentation. Finalement, la méthode DVT-SWIRE (« Deep venous thrombosis – SWIRE ») est adaptée à la caractérisation de l’élasticité quantitative de thromboses veineuses pour une utilisation en clinique. Cette méthode exploite la première fréquence de résonance mesurée dans la thrombose lors de la propagation d’ondes de cisaillement planes (vibration d’une plaque externe) ou cylindriques (simulation de la force de radiation par génération supersonique). DVT-SWIRE est appliquée sur des fantômes simulant une TVP et les résultats sont comparés à ceux donnés par l’instrument de référence RheoSpectris. Cette méthode est également utilisée avec succès dans une étude ex vivo pour l’évaluation de l’élasticité de thromboses porcines explantées après avoir été induites in vivo par chirurgie.
Resumo:
L'élastographie ultrasonore est une technique d'imagerie émergente destinée à cartographier les paramètres mécaniques des tissus biologiques, permettant ainsi d’obtenir des informations diagnostiques additionnelles pertinentes. La méthode peut ainsi être perçue comme une extension quantitative et objective de l'examen palpatoire. Diverses techniques élastographiques ont ainsi été proposées pour l'étude d'organes tels que le foie, le sein et la prostate et. L'ensemble des méthodes proposées ont en commun une succession de trois étapes bien définies: l'excitation mécanique (statique ou dynamique) de l'organe, la mesure des déplacements induits (réponse au stimulus), puis enfin, l'étape dite d'inversion, qui permet la quantification des paramètres mécaniques, via un modèle théorique préétabli. Parallèlement à la diversification des champs d'applications accessibles à l'élastographie, de nombreux efforts sont faits afin d'améliorer la précision ainsi que la robustesse des méthodes dites d'inversion. Cette thèse regroupe un ensemble de travaux théoriques et expérimentaux destinés à la validation de nouvelles méthodes d'inversion dédiées à l'étude de milieux mécaniquement inhomogènes. Ainsi, dans le contexte du diagnostic du cancer du sein, une tumeur peut être perçue comme une hétérogénéité mécanique confinée, ou inclusion, affectant la propagation d'ondes de cisaillement (stimulus dynamique). Le premier objectif de cette thèse consiste à formuler un modèle théorique capable de prédire l'interaction des ondes de cisaillement induites avec une tumeur, dont la géométrie est modélisée par une ellipse. Après validation du modèle proposé, un problème inverse est formulé permettant la quantification des paramètres viscoélastiques de l'inclusion elliptique. Dans la continuité de cet objectif, l'approche a été étendue au cas d'une hétérogénéité mécanique tridimensionnelle et sphérique avec, comme objectifs additionnels, l'applicabilité aux mesures ultrasonores par force de radiation, mais aussi à l'estimation du comportement rhéologique de l'inclusion (i.e., la variation des paramètres mécaniques avec la fréquence d'excitation). Enfin, dans le cadre de l'étude des propriétés mécaniques du sang lors de la coagulation, une approche spécifique découlant de précédents travaux réalisés au sein de notre laboratoire est proposée. Celle-ci consiste à estimer la viscoélasticité du caillot sanguin via le phénomène de résonance mécanique, ici induit par force de radiation ultrasonore. La méthode, dénommée ARFIRE (''Acoustic Radiation Force Induced Resonance Elastography'') est appliquée à l'étude de la coagulation de sang humain complet chez des sujets sains et sa reproductibilité est évaluée.
Resumo:
La chimie supramoléculaire est basée sur l'assemblage non covalent de blocs simples, des petites molécules aux polymères, pour synthétiser des matériaux fonctionnels ou complexes. La poly(4-vinylpyridine) (P4VP) est l'une des composantes supramoléculaires les plus utilisées en raison de sa chaîne latérale composée d’une pyridine pouvant interagir avec de nombreuses espèces, telles que les petites molécules monofonctionnelles et bifonctionnelles, grâce à divers types d'interactions. Dans cette thèse, des assemblages supramoléculaires de P4VP interagissant par liaisons hydrogène avec de petites molécules sont étudiés, en ayant comme objectifs de faciliter l'électrofilage de polymères et de mieux comprendre et d'optimiser la photoréponse des matériaux contenant des dérivés d'azobenzène. Une nouvelle approche est proposée afin d'élargir l'applicabilité de l'électrofilage, une technique courante pour produire des nanofibres. À cet effet, un complexe entre la P4VP et un agent de réticulation bifonctionnel capable de former deux liaisons hydrogène, le 4,4'-biphénol (BiOH), a été préparé pour faciliter le processus d’électrofilage des solutions de P4VP. Pour mieux comprendre ce complexe, une nouvelle méthode de spectroscopie infrarouge (IR) a d'abord été développée pour quantifier l'étendue de la complexation. Elle permet de déterminer un paramètre clé, le rapport du coefficient d'absorption d'une paire de bandes attribuées aux groupements pyridines libres et liées par liaisons hydrogène, en utilisant la 4-éthylpyridine comme composé modèle à l’état liquide. Cette méthode a été appliquée à de nombreux complexes de P4VP impliquant des liaisons hydrogène et devrait être généralement applicable à d'autres complexes polymères. La microscopie électronique à balayage (SEM) a révélé l'effet significatif du BiOH sur la facilité du processus d’électrofilage de P4VP de masses molaires élevées et faibles. La concentration minimale pour former des fibres présentant des perles diminue dans le N, N'-diméthylformamide (DMF) et diminue encore plus lorsque le nitrométhane, un mauvais solvant pour la P4VP et un non-solvant pour le BiOH, est ajouté pour diminuer l'effet de rupture des liaisons hydrogène causé par le DMF. Les liaisons hydrogène dans les solutions et les fibres de P4VP-BiOH ont été quantifiées par spectroscopie IR et les résultats de rhéologie ont démontré la capacité de points de réticulation effectifs, analogues aux enchevêtrements physiques, à augmenter la viscoélasticité de solutions de P4VP pour mieux résister à la formation de gouttelettes. Cette réticulation effective fonctionne en raison d'interactions entre le BiOH bifonctionnel et deux chaînes de P4VP, et entre les groupements hydroxyles du BiOH complexé de manière monofonctionnelle. Des études sur d’autres agents de réticulation de faible masse molaire ont montré que la plus forte réticulation effective est introduite par des groupes d’acide carboxylique et des ions de zinc (II) qui facilitent le processus d’électrofilage par rapport aux groupements hydroxyles du BiOH. De plus, la sublimation est efficace pour éliminer le BiOH contenu dans les fibres sans affecter leur morphologie, fournissant ainsi une méthode élégante pour préparer des fibres de polymères purs dont le processus d’électrofilage est habituellement difficile. Deux complexes entre la P4VP et des azobenzènes photoactifs portant le même groupement tête hydroxyle et différents groupes queue, soit cyano (ACN) ou hydrogène (AH), ont été étudiés par spectroscopie infrarouge d’absorbance structurale par modulation de la polarisation (PM-IRSAS) pour évaluer l'impact des groupements queue sur leur performance lors de l'irradiation avec de la lumière polarisée linéairement. Nous avons constaté que ACN mène à la photo-orientation des chaînes latérales de la P4VP et des azobenzènes, tandis que AH mène seulement à une orientation plus faible des chromophores. La photo-orientation des azobenzènes diminue pour les complexes avec une teneur croissante en chromophore, mais l'orientation de la P4VP augmente. D'autre part, l'orientation résiduelle après la relaxation thermique augmente avec la teneur en ACN, à la fois pour le ACN et la P4VP, mais la tendance opposée est constatée pour AH. Ces différences suggèrent que le moment dipolaire a un impact sur la diffusion rotationnelle des chromophores. Ces résultats contribueront à orienter la conception de matériaux polymères contenant des azobenzène efficaces.
Resumo:
Le cancer du sein est le cancer le plus fréquent chez la femme. Il demeure la cause de mortalité la plus importante chez les femmes âgées entre 35 et 55 ans. Au Canada, plus de 20 000 nouveaux cas sont diagnostiqués chaque année. Les études scientifiques démontrent que l'espérance de vie est étroitement liée à la précocité du diagnostic. Les moyens de diagnostic actuels comme la mammographie, l'échographie et la biopsie comportent certaines limitations. Par exemple, la mammographie permet de diagnostiquer la présence d’une masse suspecte dans le sein, mais ne peut en déterminer la nature (bénigne ou maligne). Les techniques d’imagerie complémentaires comme l'échographie ou l'imagerie par résonance magnétique (IRM) sont alors utilisées en complément, mais elles sont limitées quant à la sensibilité et la spécificité de leur diagnostic, principalement chez les jeunes femmes (< 50 ans) ou celles ayant un parenchyme dense. Par conséquent, nombreuses sont celles qui doivent subir une biopsie alors que leur lésions sont bénignes. Quelques voies de recherche sont privilégiées depuis peu pour réduire l`incertitude du diagnostic par imagerie ultrasonore. Dans ce contexte, l’élastographie dynamique est prometteuse. Cette technique est inspirée du geste médical de palpation et est basée sur la détermination de la rigidité des tissus, sachant que les lésions en général sont plus rigides que le tissu sain environnant. Le principe de cette technique est de générer des ondes de cisaillement et d'en étudier la propagation de ces ondes afin de remonter aux propriétés mécaniques du milieu via un problème inverse préétabli. Cette thèse vise le développement d'une nouvelle méthode d'élastographie dynamique pour le dépistage précoce des lésions mammaires. L'un des principaux problèmes des techniques d'élastographie dynamiques en utilisant la force de radiation est la forte atténuation des ondes de cisaillement. Après quelques longueurs d'onde de propagation, les amplitudes de déplacement diminuent considérablement et leur suivi devient difficile voir impossible. Ce problème affecte grandement la caractérisation des tissus biologiques. En outre, ces techniques ne donnent que l'information sur l'élasticité tandis que des études récentes montrent que certaines lésions bénignes ont les mêmes élasticités que des lésions malignes ce qui affecte la spécificité de ces techniques et motive la quantification de d'autres paramètres mécaniques (e.g.la viscosité). Le premier objectif de cette thèse consiste à optimiser la pression de radiation acoustique afin de rehausser l'amplitude des déplacements générés. Pour ce faire, un modèle analytique de prédiction de la fréquence de génération de la force de radiation a été développé. Une fois validé in vitro, ce modèle a servi pour la prédiction des fréquences optimales pour la génération de la force de radiation dans d'autres expérimentations in vitro et ex vivo sur des échantillons de tissu mammaire obtenus après mastectomie totale. Dans la continuité de ces travaux, un prototype de sonde ultrasonore conçu pour la génération d'un type spécifique d'ondes de cisaillement appelé ''onde de torsion'' a été développé. Le but est d'utiliser la force de radiation optimisée afin de générer des ondes de cisaillement adaptatives, et de monter leur utilité dans l'amélioration de l'amplitude des déplacements. Contrairement aux techniques élastographiques classiques, ce prototype permet la génération des ondes de cisaillement selon des parcours adaptatifs (e.g. circulaire, elliptique,…etc.) dépendamment de la forme de la lésion. L’optimisation des dépôts énergétiques induit une meilleure réponse mécanique du tissu et améliore le rapport signal sur bruit pour une meilleure quantification des paramètres viscoélastiques. Il est aussi question de consolider davantage les travaux de recherches antérieurs par un appui expérimental, et de prouver que ce type particulier d'onde de torsion peut mettre en résonance des structures. Ce phénomène de résonance des structures permet de rehausser davantage le contraste de déplacement entre les masses suspectes et le milieu environnant pour une meilleure détection. Enfin, dans le cadre de la quantification des paramètres viscoélastiques des tissus, la dernière étape consiste à développer un modèle inverse basé sur la propagation des ondes de cisaillement adaptatives pour l'estimation des paramètres viscoélastiques. L'estimation des paramètres viscoélastiques se fait via la résolution d'un problème inverse intégré dans un modèle numérique éléments finis. La robustesse de ce modèle a été étudiée afin de déterminer ces limites d'utilisation. Les résultats obtenus par ce modèle sont comparés à d'autres résultats (mêmes échantillons) obtenus par des méthodes de référence (e.g. Rheospectris) afin d'estimer la précision de la méthode développée. La quantification des paramètres mécaniques des lésions permet d'améliorer la sensibilité et la spécificité du diagnostic. La caractérisation tissulaire permet aussi une meilleure identification du type de lésion (malin ou bénin) ainsi que son évolution. Cette technique aide grandement les cliniciens dans le choix et la planification d'une prise en charge adaptée.
Resumo:
Abstract : The structural build-up of fresh cement-based materials has a great impact on their structural performance after casting. Accordingly, the mixture design should be tailored to adapt the kinetics of build-up given the application on hand. The rate of structural build-up of cement-based suspensions at rest is a complex phenomenon affected by both physical and chemical structuration processes. The structuration kinetics are strongly dependent on the mixture’s composition, testing parameters, as well as the shear history. Accurate measurements of build-up rely on the efficiency of the applied pre-shear regime to achieve an initial well-dispersed state as well as the applied stress during the liquid-solid transition. Studying the physical and chemical mechanisms of build-up of cement suspensions at rest can enhance the fundamental understanding of this phenomenon. This can, therefore, allow a better control of the rheological and time-dependent properties of cement-based materials. The research focused on the use of dynamic rheology in investigating the kinetics of structural build-up of fresh cement pastes. The research program was conducted in three different phases. The first phase was devoted to evaluating the dispersing efficiency of various disruptive shear techniques. The investigated shearing profiles included rotational, oscillatory, and combination of both. The initial and final states of suspension’s structure, before and after disruption, were determined by applying a small-amplitude oscillatory shear (SAOS). The difference between the viscoelastic values before and after disruption was used to express the degree of dispersion. An efficient technique to disperse concentrated cement suspensions was developed. The second phase aimed to establish a rheometric approach to dissociate and monitor the individual physical and chemical mechanisms of build-up of cement paste. In this regard, the non-destructive dynamic rheometry was used to investigate the evolutions of both storage modulus and phase angle of inert calcium carbonate and cement suspensions. Two independent build-up indices were proposed. The structural build-up of various cement suspensions made with different cement contents, silica fume replacement percentages, and high-range water reducer dosages was evaluated using the proposed indices. These indices were then compared to the well-known thixotropic index (Athix.). Furthermore, the proposed indices were correlated to the decay in lateral pressure determined for various cement pastes cast in a pressure column. The proposed pre-shearing protocol and build-up indices (phases 1 and 2) were then used to investigate the effect of mixture’s parameters on the kinetics of structural build-up in phase 3. The investigated mixture’s parameters included cement content and fineness, alkali sulfate content, and temperature of cement suspension. Zeta potential, calorimetric, spectrometric measurements were performed to explore the corresponding microstructural changes in cement suspensions, such as inter-particle cohesion, rate of Brownian flocculation, and nucleation rate. A model linking the build-up indices and the microstructural characteristics was developed to predict the build-up behaviour of cement-based suspensions The obtained results showed that oscillatory shear may have a greater effect on dispersing concentrated cement suspension than the rotational shear. Furthermore, the increase in induced shear strain was found to enhance the breakdown of suspension’s structure until a critical point, after which thickening effects dominate. An effective dispersing method is then proposed. This consists of applying a rotational shear around the transitional value between the linear and non-linear variations of the apparent viscosity with shear rate, followed by an oscillatory shear at the crossover shear strain and high angular frequency of 100 rad/s. Investigating the evolutions of viscoelastic properties of inert calcite-based and cement suspensions and allowed establishing two independent build-up indices. The first one (the percolation time) can represent the rest time needed to form the elastic network. On the other hand, the second one (rigidification rate) can describe the increase in stress-bearing capacity of formed network due to cement hydration. In addition, results showed that combining the percolation time and the rigidification rate can provide deeper insight into the structuration process of cement suspensions. Furthermore, these indices were found to be well-correlated to the decay in the lateral pressure of cement suspensions. The variations of proposed build-up indices with mixture’s parameters showed that the percolation time is most likely controlled by the frequency of Brownian collisions, distance between dispersed particles, and intensity of cohesion between cement particles. On the other hand, a higher rigidification rate can be secured by increasing the number of contact points per unit volume of paste, nucleation rate of cement hydrates, and intensity of inter-particle cohesion.