10 resultados para Viry de Viry
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
LiNbO3 thin films were grown on (0001) sapphire substrates by a chemical route, using the polymeric precursor method. The overall process consists of preparing a coating solution from the Pechini process, based on metallic citrate polymerization, the precursor films, deposited by dip coating, are then heat treated to eliminate the organic material and to synthesize the phase. In this work, we studied the influence of the heat treatment on the structural and optical properties of single-layered films. Two routes were also investigated to increase the film thickness: increasing the viscosity of the coating solution and/or increasing the number of successively deposited layers. The x-ray diffraction theta -2 theta scans revealed the c-axis orientation of the single- and multilayered films and showed that efficient crystallization can be obtained at temperatures as low as 400 degreesC, the phi-scan diffraction evidenced the epitaxial growth with two in-plane variants, A microstructural study revealed that the films were crack free, homogeneous, and relatively dense. Finally, the investigation of the optical properties (optical transmittance and refractive index) confirmed the good quality of the films. These results indicate that the polymeric precursor method is a promising process to develop lithium niobate waveguides.
Resumo:
Oriented LiNbO3 thin films were prepared using a polymeric precursor solution deposited on (0001) sapphire substrate by spin coating and crystallized in a microwave oven. Crystallization of the films was carried out in a domestic microwave oven. The influence of this type of heat treatment on the film orientation was analyzed by X-ray diffraction and electron channeling patterns, which revealed epitaxial growth of films crystallized at 550 and 650 degreesC for 10 min. A microstructural study indicated that the films treated at temperatures below 600 degreesC were homogeneous and dense, and the optical properties confirmed the good quality of these films. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The polymeric precursor method was used to prepare multi-layered LiNbO3 films. The overall process consists of preparing a coating solution from the Pechini process and the deposited film is subsequently heat-treated. Two-layered films were prepared by this process, onto (0001) sapphire substrates. Two different routes were investigated for the heat-treatment. The amorphous route consisted of performing, after each deposition, a pre-treatment at low temperature to eliminate the organic material. In this case, the crystallization heat-treatment was performed only after the two layers had been deposited. on the other hand, a process layer-after-layer crystallization was used. Both routes led to (0001) LiNbO3 oriented films. However, only the film prepared by the layer-after-layer crystallization presented an epitaxial growth and a crack-free morphology. Moreover, the layer-after-layer crystallization process led to a film exhibiting the best optical properties. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Ferroelectric SrBi2Nb2O9 (SBN) thin films were prepared by pulsed laser deposition (PLD) on Pt/Ti/SiO2/Si(100) using a sequential deposition process from two SBN and Bi2O3 targets. This route allows for bismuth enrichment of the film composition in order to improve the ferroelectric characteristics. Structural and microstructural characterizations were performed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The composition of films and targets was determined by energy dispersive X-ray spectrometry (EDX). The deposition temperature, which provided well-crystallized layered perovskite SBN phase films in situ, was found to be 700°C. The results were compared with those obtained for SBN films deposited at 400°C and then crystallized ex situ. For an ex situ annealing temperature of 750°C, a remanent polarization value (Pr) of 23.2 μc/cm2 and a coercive field (Ec) of 112 kV/cm were measured. © 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
CaSnO3 and SrSnO3 alkaline earth stannate thin films were prepared by chemical solution deposition using the polymeric precursor method on various single crystal substrates (R- and C-sapphire and 100-SrTiO3) at different temperatures. The films were characterized by X-ray diffraction (θ-2θ, ω- and φ-scans), field emission scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy and photoluminescence. Epitaxial SrSnO3 and CaSnO 3 thin films were obtained on SrTiO3 with a high crystalline quality. The long-range symmetry promoted a short-range disorder which led to photoluminescence in the epitaxial films. In contrast, the films deposited on sapphire exhibited a random polycrystalline growth with no meaningful emission regardless of the substrate orientation. The network modifier (Ca or Sr) and the substrate (sapphire or SrTiO3) influenced the crystallization process and/or the microstructure. Higher is the tilts of the SnO6 octahedra, as in CaSnO3, higher is the crystallization temperature, which changed also the nucleation/grain growth process. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
CaSnO3 and SrSnO3 alkaline earth stannate thin films were prepared by chemical solution deposition using the polymeric precursor method on various single crystal substrates (R- and C-sapphire and 100-SrTiO3) at different temperatures. The films were characterized by X-ray diffraction (θ-2θ, ω- and φ-scans), field emission scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy and photoluminescence. Epitaxial SrSnO3 and CaSnO3 thin films were obtained on SrTiO3 with a high crystalline quality. The long-range symmetry promoted a short-range disorder which led to photoluminescence in the epitaxial films. In contrast, the films deposited on sapphire exhibited a random polycrystalline growth with no meaningful emission regardless of the substrate orientation. The network modifier (Ca or Sr) and the substrate (sapphire or SrTiO3) influenced the crystallization process and/or the microstructure. Higher is the tilts of the SnO6 octahedra, as in CaSnO3, higher is the crystallization temperature, which changed also the nucleation/grain growth process.
Resumo:
Issued also as thesis, Univ. de Lyon.