996 resultados para Virtual screening
Resumo:
In this work, we have used molecular dynamics, density functional theory, virtual screening, ADMET predictions, and molecular interaction field studies to design and propose eight novel potential inhibitors of CDK2. The eight molecules proposed showed interesting structural characteristics that are required for inhibiting the CDK2 activity and show potential as drug candidates for the treatment of cancer. The parameters related to the Rule of Five were calculated, and only one of the molecules violated more than one parameter. One of the proposals and one of the drug-like compounds selected by virtual screening indicated to be promising candidates for CDK2-based cancer therapy.
Resumo:
Dietary changes associated with drug therapy can reduce high serum cholesterol levels and dramatically decrease the risk of coronary artery disease, stroke, and overall mortality. Statins are hypolipemic drugs that are effective in the reduction of cholesterol serum levels, attenuating cholesterol synthesis in liver by competitive inhibition regarding the substrate or molecular target HMG-CoA reductase. We have herewith used computer-aided molecular design tools, i.e., flexible docking, virtual screening in large data bases, molecular interaction fields to propose novel potential HMG-CoA reductase inhibitors that are promising for the treatment of hypercholesterolemia.
Resumo:
Monoamine oxidase is a flavoenzyme bound to the mitochondrial outer membranes of the cells, which is responsible for the oxidative deamination of neurotransmitter and dietary amines. It has two distinct isozymic forms, designated MAO-A and MAO-B, each displaying different substrate and inhibitor specificities. They are the well-known targets for antidepressant, Parkinson`s disease, and neuroprotective drugs. Elucidation of the x-ray crystallographic structure of MAO-B has opened the way for the molecular modeling studies. In this work we have used molecular modeling, density functional theory with correlation, virtual screening, flexible docking, molecular dynamics, ADMET predictions, and molecular interaction field studies in order to design new molecules with potential higher selectivity and enzymatic inhibitory activity over MAO-B.
Resumo:
The information provided by the alignment-independent GRid Independent Descriptors (GRIND) can be condensed by the application of principal component analysis, obtaining a small number of principal properties (GRIND-PP), which is more suitable for describing molecular similarity. The objective of the present study is to optimize diverse parameters involved in the obtention of the GRIND-PP and validate their suitability for applications, requiring a biologically relevant description of the molecular similarity. With this aim, GRIND-PP computed with a collection of diverse settings were used to carry out ligand-based virtual screening (LBVS) on standard conditions. The quality of the results obtained was remarkable and comparable with other LBVS methods, and their detailed statistical analysis allowed to identify the method settings more determinant for the quality of the results and their optimum. Remarkably, some of these optimum settings differ significantly from those used in previously published applications, revealing their unexplored potential. Their applicability in large compound database was also explored by comparing the equivalence of the results obtained using either computed or projected principal properties. In general, the results of the study confirm the suitability of the GRIND-PP for practical applications and provide useful hints about how they should be computed for obtaining optimum results.
Resumo:
Our docking program, Fitted, implemented in our computational platform, Forecaster, has been modified to carry out automated virtual screening of covalent inhibitors. With this modified version of the program, virtual screening and further docking-based optimization of a selected hit led to the identification of potential covalent reversible inhibitors of prolyl oligopeptidase activity. After visual inspection, a virtual hit molecule together with four analogues were selected for synthesis and made in one-five chemical steps. Biological evaluations on recombinant POP and FAPα enzymes, cell extracts, and living cells demonstrated high potency and selectivity for POP over FAPα and DPPIV. Three compounds even exhibited high nanomolar inhibitory activities in intact living human cells and acceptable metabolic stability. This small set of molecules also demonstrated that covalent binding and/or geometrical constraints to the ligand/protein complex may lead to an increase in bioactivity.
Resumo:
Transketolase is an enzyme involved in a critical step of the non-oxidative branch of the pentose phosphate pathway whose inhibition could lead to new anticancer drugs. Here, we report new human transketolase inhibitors, based on the phenyl urea scaffold, found by applying structure-based virtual screening. These inhibitors are designed to cover a hot spot in the dimerization interface of the homodimer of the enzyme, providing for the first time compounds with a suggested novel binding mode not based on mimicking the thiamine pyrophosphate cofactor.
Resumo:
Understanding molecular recognition is one major requirement for drug discovery and design. Physicochemical and shape complementarity between two binding partners is the driving force during complex formation. In this study, the impact of shape within this process is analyzed. Protein binding pockets and co-crystallized ligands are represented by normalized principal moments of inertia ratios (NPRs). The corresponding descriptor space is triangular, with its corners occupied by spherical, discoid, and elongated shapes. An analysis of a selected set of sc-PDB complexes suggests that pockets and bound ligands avoid spherical shapes, which are, however, prevalent in small unoccupied pockets. Furthermore, a direct shape comparison confirms previous studies that on average only one third of a pocket is filled by its bound ligand, supplemented by a 50 % subpocket coverage. In this study, we found that shape complementary is expressed by low pairwise shape distances in NPR space, short distances between the centers-of-mass, and small deviations in the angle between the first principal ellipsoid axes. Furthermore, it is assessed how different binding pocket parameters are related to bioactivity and binding efficiency of the co-crystallized ligand. In addition, the performance of different shape and size parameters of pockets and ligands is evaluated in a virtual screening scenario performed on four representative targets.
Resumo:
Virtual screening is a central technique in drug discovery today. Millions of molecules can be tested in silico with the aim to only select the most promising and test them experimentally. The topic of this thesis is ligand-based virtual screening tools which take existing active molecules as starting point for finding new drug candidates. One goal of this thesis was to build a model that gives the probability that two molecules are biologically similar as function of one or more chemical similarity scores. Another important goal was to evaluate how well different ligand-based virtual screening tools are able to distinguish active molecules from inactives. One more criterion set for the virtual screening tools was their applicability in scaffold-hopping, i.e. finding new active chemotypes. In the first part of the work, a link was defined between the abstract chemical similarity score given by a screening tool and the probability that the two molecules are biologically similar. These results help to decide objectively which virtual screening hits to test experimentally. The work also resulted in a new type of data fusion method when using two or more tools. In the second part, five ligand-based virtual screening tools were evaluated and their performance was found to be generally poor. Three reasons for this were proposed: false negatives in the benchmark sets, active molecules that do not share the binding mode, and activity cliffs. In the third part of the study, a novel visualization and quantification method is presented for evaluation of the scaffold-hopping ability of virtual screening tools.
Resumo:
As a continuing effort to establish the structure-activity relationships (SARs) within the series of the angiotensin II antagonists (sartans), a pharmacophoric model was built by using novel TOPP 3D descriptors. Statistical values were satisfactory (PC4: r(2)=0.96, q(2) ((5) (random) (groups))=0.84; SDEP=0.26) and encouraged the synthesis and consequent biological evaluation of a series of new pyrrolidine derivatives. SAR together with a combined 3D quantitative SAR and high-throughput virtual screening showed that the newly synthesized 1-acyl-N-(biphenyl-4-ylmethyl)pyrrolidine-2-carboxamides may represent an interesting starting point for the design of new antihypertensive agents. In particular, biological tests performed on CHO-hAT(1) cells stably expressing the human AT(1) receptor showed that the length of the acyl chain is crucial for the receptor interaction and that the valeric chain is the optimal one.
Resumo:
In the course of our research program to discover novel antileishmanial agents, a biological screening of natural products against Leishmania major promastigotes allowed the identification of a furoquinoline alkaloid (1) and a furanocoumarin (2) as new hits. Subsequently, an integrated ligand-based virtual screening approach was employed to search for new antileishmanial compounds using these naturally occurring molecules as templates. Fourteen out of 40 compounds selected from a database of about 800,000 compounds (extracted from ZINC, a free database for virtual screening) were experimentally confirmed to possess significant in vitro antileishmanial properties. The application of ligand-based virtual screening as a complementary approach to experimental natural product screening was a useful strategy to facilitate the identification of new promising lead candidates.
Resumo:
Schistosomiasis is considered the second most important tropical parasitic disease, with severe socioeconomic consequences for millions of people worldwide. Schistosoma monsoni, one of the causative agents of human schistosomiasis, is unable to synthesize purine nucleotides de novo, which makes the enzymes of the purine salvage pathway important targets for antischistosomal drug development. In the present work, we describe the development of a pharmacophore model for ligands of S. mansoni purine nucleoside phosphorylase (SmPNP) as well as a pharmacophore-based virtual screening approach, which resulted in the identification of three thioxothiazolidinones (1-3) with substantial in vitro inhibitory activity against SmPNP. Synthesis, biochemical evaluation, and structure activity relationship investigations led to the successful development of a small set of thioxothiazolidinone derivatives harboring a novel chemical scaffold as new competitive inhibitors of SmPNP at the low-micromolar range. Seven compounds were identified with IC(50) values below 100 mu M. The most potent inhibitors 7, 10, and 17 with 1050 of 2, 18, and 38 mu M, respectively, could represent new potential lead compounds for further development of the therapy of schistosomiasis.
Resumo:
The hemeprotein myeloperoxidase (MPO) participates in innate immune defense through its ability to generate potent microbicidal oxidants. However, these oxidants are also key mediators of the tissue damage associated with many inflammatory diseases. Thus, there is considerable interest in developing therapeutically useful MPO inhibitors. Here, we used structure-based drug design (SBDD) and ligand-based drug design (LBDD) to select for potentially new and selective MPO inhibitors. A pharmacophore model was developed based on the crystal structure of human MPO in complex with salicylhydroxamic acid (SHA), a known inhibitor of the enzyme. The pharmacophore model was used to screen the ZINC database for potential ligands, which were further filtered on the basis of their physical-chemical properties and docking score. The filtered compounds were visually inspected, and nine were purchased for experimental studies. Surprisingly, almost all of the selected compounds belonged to the aromatic hydrazide class, which had been previously described as MPO inhibitors. The compounds selected by virtual screening were shown to inhibit the chlorinating activity of MPO; the top four compounds displayed IC(50) values ranging from 1.0 to 2.8 mM. MPO inactivation by the most effective compound was shown to be irreversible. Overall, our results show that SBDD and LBDD may be useful for the rational development of new MPO inhibitors.
Resumo:
Some unexpected promiscuous inhibitors were observed in a virtual screening protocol applied to select cruzain inhibitors from the ZINC database. Physical-chemical and pharmacophore model filters were used to reduce the database size. The selected compounds were docked into the cruzain active site. Six hit compounds were tested as inhibitors. Although the compounds were designed to be nucleophilically attacked by the catalytic cysteine of cruzain, three of them showed typical promiscuous behavior, revealing that false positives are a prevalent concern in VS programs. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A myriad of methods are available for virtual screening of small organic compound databases. In this study we have successfully applied a quantitative model of consensus measurements, using a combination of 3D similarity searches (ROCS and EON), Hologram Quantitative Structure Activity Relationships (HQSAR) and docking (FRED, FlexX, Glide and AutoDock Vina), to retrieve cruzain inhibitors from collected databases. All methods were assessed individually and then combined in a Ligand-Based Virtual Screening (LBVS) and Target-Based Virtual Screening (TBVS) consensus scoring, using Receiving Operating Characteristic (ROC) curves to evaluate their performance. Three consensus strategies were used: scaled-rank-by-number, rank-by-rank and rank-by-vote, with the most thriving the scaled-rank-by-number strategy, considering that the stiff ROC curve appeared to be satisfactory in every way to indicate a higher enrichment power at early retrieval of active compounds from the database. The ligand-based method provided access to a robust and predictive HQSAR model that was developed to show superior discrimination between active and inactive compounds, which was also better than ROCS and EON procedures. Overall, the integration of fast computational techniques based on ligand and target structures resulted in a more efficient retrieval of cruzain inhibitors with desired pharmacological profiles that may be useful to advance the discovery of new trypanocidal agents.