850 resultados para Virtual reality in architecture
Resumo:
This paper presents a methodology for the incorporation of a Virtual Reality development applied to the teaching of manufacturing processes, namely the group of machining processes in numerical control of machine tools. The paper shows how it is possible to supplement the teaching practice through virtual machine-tools whose operation is similar to the 'real' machines while eliminating the risks of use for both users and the machines.
Resumo:
User interaction within a virtual environment may take various forms: a teleconferencing application will require users to speak to each other (Geak, 1993), with computer supported co-operative working; an Engineer may wish to pass an object to another user for examination; in a battle field simulation (McDonough, 1992), users might exchange fire. In all cases it is necessary for the actions of one user to be presented to the others sufficiently quickly to allow realistic interaction. In this paper we take a fresh look at the approach of virtual reality operating systems by tackling the underlying issues of creating real-time multi-user environments.
Resumo:
This paper describes a work-in-progress on developing design environments that combine wireless and mobile technologies with augmented reality to facilitate bringing context from the physical environment to the virtual models for design work. One of the challenges for designers in a variety of end-user-oriented design disciplines such as architecture and industrial design has been capturing and replaying the contextual information of the intended domain of the artifact being designed. Either the technology is decidedly low-tech, such as charcoal drawings in a sketchbook, out-of-reach, such as immersive virtual reality CAVEs, or a “make-do” with existing technologies, such as a collage of digital photos. This paper describes a novel combination of “off-the-shelf” technologies that may allow designers more capability to create models using standard computer-aided design applications and augmented reality to combine the current, physical context with the projected, digital context. We demonstrate this approach in the building design domain to address a common problem in building construction, construction defect resolution.
Design of a Virtual Reality Framework for Maintainability and assemblability test of complex systems
Resumo:
This paper presents a unique environment whose features are able to satisfy requirements for both virtual maintenance and virtual manufacturing through the conception of original virtual reality (VR) architecture. Virtual Reality for the Maintainability and Assemblability Tests (VR_MATE) encompasses VR hardware and software and a simulation manager which allows customisation of the architecture itself as well as interfacing with a wide range of devices employed in the simulations. Two case studies are presented to illustrate VR_MATE's unique ability to allow for both maintainability tests and assembly analysis of an aircraft carriage and a railway coach cooling system respectively. The key impact of this research is the demonstration of the potentialities of using VR techniques in industry and its multiple applications despite the subjective character within the simulation. VR_MATE has been presented as a framework to support the strategic and operative objectives of companies to reduce product development time and costs whilst maintaining product quality for applications which would be too expensive to simulate and evaluate in the real world.
Resumo:
Research to date has tended to concentrate on bandwidth considerations to increase scalability in distributed interactive simulation and virtual reality systems. This paper proposes that the major concern for latency in user interaction is that of the fundamental limit of communication rate due to the speed of light. Causal volumes and surfaces are introduced as a model of the limitations of causality caused by this fundamental delay. The concept of virtual world critical speed is introduced, which can be determined from the causal surface. The implications of the critical speed are discussed, and relativistic dynamics are used to constrain the object speed, in the same way speeds are bounded in the real world.