995 resultados para Viral evolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider two viral strains competing against each other within individual hosts (at cellular level) and at population level (for infecting hosts) by studying two cases. In the first case, the strains do not mutate into each other. In this case, we found that each individual in the population can be infected by only one strain and that co-existence in the population is possible only when the strain that has the greater basic intracellular reproduction number, R (0c) , has the smaller population number R (0p) . Treatment against the one strain shifts the population equilibrium toward the other strain in a complicated way (see Appendix B). In the second case, we assume that the strain that has the greater intracellular number R (0c) can mutate into the other strain. In this case, individual hosts can be simultaneously infected by both strains (co-existence within the host). Treatment shifts the prevalence of the two strains within the hosts, depending on the mortality induced by the treatment, which is, in turn, dependent upon the doses given to each individual. The relative proportions of the strains at the population level, under treatment, depend both on the relative proportions within the hosts (which is determined by the dosage of treatment) and on the number of individuals treated per unit time, that is, the rate of treatment. Implications for cases of real diseases are briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viruses rapidly evolve, and HIV in particular is known to be one of the fastest evolving human viruses. It is now commonly accepted that viral evolution is the cause of the intriguing dynamics exhibited during HIV infections and the ultimate success of the virus in its struggle with the immune system. To study viral evolution, we use a simple mathematical model of the within-host dynamics of HIV which incorporates random mutations. In this model, we assume a continuous distribution of viral strains in a one-dimensional phenotype space where random mutations are modelled by di ffusion. Numerical simulations show that random mutations combined with competition result in evolution towards higher Darwinian fitness: a stable traveling wave of evolution, moving towards higher levels of fi tness, is formed in the phenoty space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular immune responses during acute Hepatitis C virus (HCV) and HIV infection are a known correlate of infection outcome. Viral adaptation to these responses via mutation(s) within CD8+ T-cell epitopes allows these viruses to subvert host immune control. This study examined HCV evolution in 21 HCV genotype 1-infected subjects to characterise the level of viral adaptation during acute and early HCV infection. Of the total mutations observed 25% were within described CD8+ T-cell epitopes or at viral adaptation sites. Most mutations were maintained into the chronic phase of HCV infection (75%). The lack of reversion of adaptations and high proportion of silent substitutions suggests that HCV has structural and functional limitations that constrain evolution. These results were compared to the pattern of viral evolution observed in 98 subjects during a similar phase in HIV infection from a previous study. In contrast to HCV, evolution during acute HIV infection is marked by high levels of amino acid change relative to silent substitutions, including a higher proportion of adaptations, likely reflecting strong and continued CD8+ T-cell pressure combined with greater plasticity of the virus. Understanding viral escape dynamics for these two viruses is important for effective T cell vaccine design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background & Aims: HLA-B⁄27 is associated with spontaneous HCV genotype 1 clearance. HLA-B⁄27-restricted CD8+ T cells target three NS5B epitopes. Two of these epitopes are dominantly targeted in the majority of HLA-B⁄27+ patients. In chronic infection, viral escape occurs consistently in these two epitopes. The third epitope (NS5B2820) was dominantly targeted in an acutely infected patient. This was in contrast, however, to the lack of recognition and viral escape in the large majority of HLA-B⁄27+ patients. Here, we set out to determine the host factors contributing to selective targeting of this epitope. Methods: Four-digit HLA class I typing and viral sequence analyses were performed in 78 HLA-B⁄27+ patients with chronic HCV genotype 1 infection. CD8+ T cell analyses were performed in a subset of patients. In addition, HLA/peptide affinity was compared for HLA-B⁄27:02 and 05. Results: The NS5B2820 epitope is only restricted by the HLA-B⁄27 subtype HLA-B⁄27:02 (that is frequent in Mediterranean populations), but not by the prototype HLA-B⁄27 subtype B⁄27:05. Indeed, the epitope is very dominant in HLA-B⁄27:02+ patients and is associated with viral escape mutations at the anchor position for HLA-binding in 12 out of 13 HLA-B⁄27:02+ chronically infected patients. Conclusions: The NS5B2820 epitope is immunodominant in the context of HLA-B⁄27:02, but is not restricted by other HLA-B⁄27 subtypes. This finding suggests an important role of HLA subtypes in the restriction of HCV-specific CD8+ responses. With minor HLA subtypes covering up to 39% of specific populations, these findings may have important implications for the selection of epitopes for global vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human polyomavirus JC (JCV) causes the central nervous system demyelinating disease progressive multifocal leukoencephalopathy. Previously, we showed that 40% of Caucasians in the United States excrete JCV in the urine as detected by PCR. We have now studied 68 Navaho from New Mexico, 25 Flathead from Montana, and 29 Chamorro from Guam. By using PCR amplification of a fragment of the VP1 gene, JCV DNA was detected in the urine of 45 (66%) Navaho, 14 (56%) Flathead, and 20 (69%) Chamorro. Genotyping of viral DNAs in these cohorts by cycle sequencing showed predominantly type 2 (Asian), rather than type 1 (European). Type 1 is the major type in the United States and Hungary. Type 2 can be further subdivided into 2A, 2B, and 2C. Type 2A is found in China and Japan. Type 2B is a subtype related to the East Asian type, and is now found in Europe and the United States. The large majority (56–89%) of strains excreted by Native Americans and Pacific Islanders were the type 2A subtype, consistent with the origin of these strains in Asia. These findings indicate that JCV infection of Native Americans predates contact with Europeans, and likely predates migration of Amerind ancestors across the Bering land bridge around 12,000–30,000 years ago. If JCV had already differentiated into stable modern genotypes and subtypes prior to first settlement, the origin of JCV in humans may date from 50,000 to 100,000 years ago or more. We conclude that JCV may have coevolved with the human species, and that it provides a convenient marker for human migrations in both prehistoric and modern times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microbial symbionts can modulate host interactions with biotic and abiotic factors. Such interactions may affect the evolutionary trajectories of both host and symbiont. Wolbachia protects Drosophila melanogaster against several viral infections and the strength of the protection varies between variants of this endosymbiont. Since Wolbachia is maternally transmitted, its fitness depends on the fitness of its host. Therefore, Wolbachia populations may be under selection when Drosophila is subjected to viral infection. Here we show that in D. melanogaster populations selected for increased survival upon infection with Drosophila C virus there is a strong selection coefficient for specific Wolbachia variants, leading to their fixation. Flies carrying these selected Wolbachia variants have higher survival and fertility upon viral infection when compared to flies with the other variants. These findings demonstrate how the interaction of a host with pathogens shapes the genetic composition of symbiont populations. Furthermore, host adaptation can result from the evolution of its symbionts, with host and symbiont functioning as a single evolutionary unit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human immunodeficiency virus type 1 (HIV-1) variants resistant to protease (PR) and reverse transcriptase (RT) inhibitors may display impaired infectivity and replication capacity. The individual contributions of mutated HIV-1 PR and RT to infectivity, replication, RT activity, and protein maturation (herein referred to as "fitness") in recombinant viruses were investigated by separately cloning PR, RT, and PR-RT cassettes from drug-resistant mutant viral isolates into the wild-type NL4-3 background. Both mutant PR and RT contributed to measurable deficits in fitness of viral constructs. In peripheral blood mononuclear cells, replication rates (means +/- standard deviations) of RT recombinants were 72.5% +/- 27.3% and replication rates of PR recombinants were 60.5% +/- 33.6% of the rates of NL4-3. PR mutant deficits were enhanced in CEM T cells, with relative replication rates of PR recombinants decreasing to 15.8% +/- 23.5% of NL4-3 replication rates. Cloning of the cognate RT improved fitness of some PR mutant clones. For a multidrug-resistant virus transmitted through sexual contact, RT constructs displayed a marked infectivity and replication deficit and diminished packaging of Pol proteins (RT content in virions diminished by 56.3% +/- 10.7%, and integrase content diminished by 23.3% +/- 18.4%), a novel mechanism for a decreased-fitness phenotype. Despite the identified impairment of recombinant clones, fitness of two of the three drug-resistant isolates was comparable to that of wild-type, susceptible viruses, suggestive of extensive compensation by genomic regions away from PR and RT. Only limited reversion of mutated positions to wild-type amino acids was observed for the native isolates over 100 viral replication cycles in the absence of drug selective pressure. These data underscore the complex relationship between PR and RT adaptive changes and viral evolution in antiretroviral drug-resistant HIV-1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Evolution of HIV-1 env sequences was studied in 15 seroconverting injection drug users selected for differences in the extent of CD4 T cell decline. The rates of increase of either sequence diversity at a given visit or divergence from the first seropositive visit were both higher in progressors than in nonprogressors. Viral evolution in individuals with rapid or moderate disease progression showed selection favoring nonsynonymous mutations, while nonprogressors with low viral loads selected against the nonsynonymous mutations that might have resulted in viruses with higher levels of replication. For 10 of the 15 subjects no single variant predominated over time. Evolution away from a dominant variant was followed frequently at a later time point by return to dominance of strains closely related to that variant. The observed evolutionary pattern is consistent with either selection against only the predominant virus or independent evolution occurring in different environments within the host. Differences in the level to which CD4 T cells fall in a given time period reflect not only quantitative differences in accumulation of mutations, but differences in the types of mutations that provide the best adaptation to the host environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The primary goal of this dissertation is the study of patterns of viral evolution inferred from serially-sampled sequence data, i.e., sequence data obtained from strains isolated at consecutive time points from a single patient or host. RNA viral populations have an extremely high genetic variability, largely due to their astronomical population sizes within host systems, high replication rate, and short generation time. It is this aspect of their evolution that demands special attention and a different approach when studying the evolutionary relationships of serially-sampled sequence data. New methods that analyze serially-sampled data were developed shortly after a groundbreaking HIV-1 study of several patients from which viruses were isolated at recurring intervals over a period of 10 or more years. These methods assume a tree-like evolutionary model, while many RNA viruses have the capacity to exchange genetic material with one another using a process called recombination. ^ A genealogy involving recombination is best described by a network structure. A more general approach was implemented in a new computational tool, Sliding MinPD, one that is mindful of the sampling times of the input sequences and that reconstructs the viral evolutionary relationships in the form of a network structure with implicit representations of recombination events. The underlying network organization reveals unique patterns of viral evolution and could help explain the emergence of disease-associated mutants and drug-resistant strains, with implications for patient prognosis and treatment strategies. In order to comprehensively test the developed methods and to carry out comparison studies with other methods, synthetic data sets are critical. Therefore, appropriate sequence generators were also developed to simulate the evolution of serially-sampled recombinant viruses, new and more through evaluation criteria for recombination detection methods were established, and three major comparison studies were performed. The newly developed tools were also applied to "real" HIV-1 sequence data and it was shown that the results represented within an evolutionary network structure can be interpreted in biologically meaningful ways. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we analysed the haemagglutinin (HA) gene identified by polymerase chain reaction from 90 influenza A H1N1 virus strains that circulated in Brazil from April 2009-June 2010. A World Health Organization sequencing protocol allowed us to identify amino acid mutations in the HA protein at positions S220T (71%), D239G/N/S (20%), Y247H (4.5%), E252K (3.3%), M274V (2.2%), Q310H (26.7%) and E391K (12%). A fatal outcome was associated with the D239G mutation (p < 0.0001). Brazilian HA genetic diversity, in comparison to a reference strain from California, highlights the role of influenza virus surveillance for study of viral evolution, in addition to monitoring the spread of the virus worldwide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: The adaptive immune response against hepatitis C virus (HCV) is significantly shaped by the host's composition of HLA alleles. Thus, the HLA phenotype is a critical determinant of viral evolution during adaptive immune pressure. Potential associations of HLA class I alleles with polymorphisms of HCV immune escape variants are largely unknown. Methods: Direct sequence analysis of the genes encoding the HCV proteins E2, NS3 and NS5B in a cohort of 159 patients with chronic HCV genotype 1 infection who were treated with pegylated interferon-alfa 2b and ribavirin in a prospective controlled trial for 48 weeks was exhibited. HLA class I genotyping was performed by strand-specific reverse hybridization with the INNO-LiPA line probe assays for HLA-A and HLA-B and by strand-specific PCR-SSP. We analyzed each amino acid position of HCV proteins using an extension of Fisher's exact test for associations with HLA alleles. In addition, associations of specific HLA alleles with inflammatory activity, liver fibrosis, HCV RNA viral load and virologic treatment outcome were investigated. Results: Separate analyses of HCV subtype 1a and 1b isolates revealed substantially different patterns of HLA-restricted polymorphisms between subtypes. Only one polymorphism within NS5B (V2758x) was significantly associated with HLA B*15 in HCV genotype 1b infected patients (adjusted p=0,048). However, a number of HLA class I-restricted polymorphisms within novel putative HCV CD8+ T cell epitopes (genotype 1a: HLA-A*11 GTRTIASPK1086-1094 [NS3], HLA-B*07 WPAPQGARSL1111-1120 [NS3]; genotype 1b: HLA-A*24 HYAPRPCGI488-496 [E2], HLA-B*44 GENETDVLL530-538 [E2], HLA-B*15 RVFTEAMTRY2757-2766 [NS5B]) were observed with high predicted epitope binding scores assessed by the web-based software SYFPEITHI (>21). Most of the identified putative epitopes were overlapping with already otherwise published epitopes, indicating a high immunogenicity of the accordant HCV protein region. In addition, certain HLA class I alleles were associated with inflammatory activity, stage of liver fibrosis, and sustained virologic response to antiviral therapy. Conclusions: HLA class I restricted HCV sequence polymorphisms are rare. HCV polymorphisms identified within putative HCV CD8+ T cell epitopes in the present study differ in their genomic distribution between genotype 1a and 1b isolates, implying divergent adaptation to the host's immune pressure on the HCV subtype level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’épidémie du VIH-1 dure maintenant depuis plus de 25 ans. La grande diversité génétique de ce virus est un obstacle majeur en vue de l’éradication de cette pandémie. Au cours des années, le VIH-1 a évolué en plus de cinquante sous-types ou formes recombinantes. Cette diversité génétique est influencée par diverses pressions de sélection, incluant les pressions du système immunitaire de l’hôte et les agents antirétroviraux (ARV). En effet, bien que les ARV aient considérablement réduit les taux de morbidité et de mortalité, en plus d’améliorer la qualité et l’espérance de vie des personnes atteintes du VIH-1, ces traitements sont complexes, dispendieux et amènent leur lot de toxicité pouvant mener à des concentrations plasmatiques sous-optimales pour contrôler la réplication virale. Ceci va permettre l’émergence de variantes virales portant des mutations de résistance aux ARV. Ce phénomène est encore plus complexe lorsque l’on prend en considération l’immense diversité génétique des différents sous-types. De plus, le virus du VIH est capable de persister sous forme latente dans diverses populations cellulaires, rendant ainsi son éradication extrêmement difficile. Des stratégies pouvant restreindre la diversité virale ont donc été préconisées dans le but de favoriser les réponses immunes de l’hôte pour le contrôle de l’infection et d’identifier des variantes virales offrant une meilleure cible pour des stratégies vaccinales ou immunothérapeutiques. Dans cet esprit, nous avons donc étudié, chez des sujets infectés récemment par le VIH-1, l’effet du traitement ARV précoce sur la diversité virale de la région C2V5 du gène enveloppe ainsi que sur la taille des réservoirs. En deuxième lieu, nous avons caractérisé la pression de sélection des ARV sur des souches virales de sous types variés non-B, chez des patients du Mali et du Burkina Faso afin d’évaluer les voies d’échappement viral dans un fond génétique différent du sous-type B largement prévalent en Amérique du Nord. Notre étude a démontré la présence d’une population virale très homogène et peu diversifiée dans les premières semaines suivant l’infection, qui évolue pour atteindre une diversification de +0,23% à la fin de la première année. Cette diversification est plus importante chez les sujets n’ayant pas initié de traitement. De plus, ceci s’accompagne d’un plus grand nombre de particules virales infectieuses dans les réservoirs viraux des cellules mononucléées du sang périphérique (PBMC) chez ces sujets. Ces résultats suggèrent que l’initiation précoce du traitement pourrait avoir un effet bénéfique en retardant l’évolution virale ainsi que la taille des réservoirs, ce qui pourrait supporter une réponse immune mieux ciblée et potentiellement des stratégies immunothérapeutiques permettant d’éradiquer le virus. Nous avons également suivi 801 sujets infectés par des sous-types non-B sur le point de débuter un traitement antirétroviral. Bien que la majorité des sujets ait été à un stade avancé de la maladie, plus de 75% des individus ont obtenu une charge virale indétectable après 6 mois d’ARV, témoignant de l’efficacité comparable des ARV sur les sous-types non-B et B. Toutefois, contrairement aux virus de sous-type B, nous avons observé différentes voies moléculaires de résistance chez les sous type non-B, particulièrement chez les sous-types AGK/AK/K pour lesquels les voies de résistances étaient associées de façon prédominante aux TAM2. De plus, bien que la divergence entre les virus retrouvés chez les patients d’une même région soit faible, nos analyses phylogénétiques ont permis de conclure que ces mutations de résistance se sont produites de novo et non à partir d’un ancêtre commun porteur de résistance. Cependant, notre dernière étude au Mali nous a permis d’évaluer la résistance primaire à près de 10% et des études phylogénétiques seront effectuées afin d’évaluer la circulation de ces souches résistantes dans la population. Ces études suggèrent qu’un contrôle de la réplication virale par les ARV peut freiner la diversité du VIH et ainsi ouvrir la voie à un contrôle immunologique ciblé, utilisant de nouvelles stratégies vaccinales ou immunothérapeutiques. Toutefois, une thérapie antirétrovirale sous-optimale (adhérence, toxicité) peut conduire à l’échappement virologique en favorisant l’émergence et la dissémination de souches résistantes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Globally, hepatitis C virus (HCV) infection affects approximately 130 million people and 3 million new infections occur annually. HCV is also recognized as an important cause of chronic liver disease in children. The absence of proofreading properties of the HCV RNA polymerase leads to a highly error prone replication process, allowing HCV to escape host immune response. The adaptive nature of HCV evolution dictates the outcome of the disease in many ways. Here, we investigated the molecular evolution of HCV in three unrelated children who acquired chronic HCV infection as a result of mother-to-child transmission, two of whom were also coinfected with HIV-1. The persistence of discrete HCV variants and their population structure were assessed using median joining network and Bayesian approaches. While patterns of viral evolution clearly differed between subjects, immune system dysfunction related to HIV coinfection or persistent HCV seronegativity stand as potential mechanisms to explain the lack of molecular evolution observed in these three cases. In contrast, treatment of HCV infection with PegIFN, which did not lead to sustained virologic responses in all 3 cases, was not associated with commensurate variations in the complexity of the variant spectrum. Finally, the differences in the degree of divergence suggest that the mode of transmission of the virus was not the main factor driving viral evolution. (C) 2013 Elsevier B. V. All rights reserved.