10 resultados para Viks, Uˆlle: Väike vormisõnsatik
Resumo:
In previous works we showed how to combine propositional multimodal logics using Gabbay's \emph{fibring} methodology. In this paper we extend the above mentioned works by providing a tableau-based proof technique for the combined/fibred logics. To achieve this end we first make a comparison between two types of tableau proof systems, (\emph{graph} $\&$ \emph{path}), with the help of a scenario (The Friend's Puzzle). Having done that we show how to uniformly construct a tableau calculus for the combined logic using Governatori's labelled tableau system \KEM. We conclude with a discussion on \KEM's features.
Resumo:
Lineage-survival oncogenes are activated by somatic DNA alterations in cancers arising from the cell lineages in which these genes play a role in normal development(1,2). Here we show that a peak of genomic amplification on chromosome 3q26.33 found in squamous cell carcinomas (SCCs) of the lung and esophagus contains the transcription factor gene SOX2, which is mutated in hereditary human esophageal malformations(3), is necessary for normal esophageal squamous development(4), promotes differentiation and proliferation of basal tracheal cells(5) and cooperates in induction of pluripotent stem cells(6-8). SOX2 expression is required for proliferation and anchorage-independent growth of lung and esophageal cell lines, as shown by RNA interference experiments. Furthermore, ectopic expression of SOX2 here cooperated with FOXE1 or FGFR2 to transform immortalized tracheobronchial epithelial cells. SOX2-driven tumors show expression of markers of both squamous differentiation and pluripotency. These characteristics identify SOX2 as a lineage-survival oncogene in lung and esophageal SCC.
Resumo:
Selostus: Vasikoiden tuottaminen tuoreilla ja kylmäsäilytetyillä halkaistuilla alkioilla
Resumo:
QUESTION UNDER STUDY The aim of this study was to evaluate the cost-effectiveness of ticagrelor and generic clopidogrel as add-on therapy to acetylsalicylic acid (ASA) in patients with acute coronary syndrome (ACS), from a Swiss perspective. METHODS Based on the PLATelet inhibition and patient Outcomes (PLATO) trial, one-year mean healthcare costs per patient treated with ticagrelor or generic clopidogrel were analysed from a payer perspective in 2011. A two-part decision-analytic model estimated treatment costs, quality-adjusted life years (QALYs), life years and the cost-effectiveness of ticagrelor and generic clopidogrel in patients with ACS up to a lifetime at a discount of 2.5% per annum. Sensitivity analyses were performed. RESULTS Over a patient's lifetime, treatment with ticagrelor generates an additional 0.1694 QALYs and 0.1999 life years at a cost of CHF 260 compared with generic clopidogrel. This results in an Incremental Cost Effectiveness Ratio (ICER) of CHF 1,536 per QALY and CHF 1,301 per life year gained. Ticagrelor dominated generic clopidogrel over the five-year and one-year periods with treatment generating cost savings of CHF 224 and 372 while gaining 0.0461 and 0.0051 QALYs and moreover 0.0517 and 0.0062 life years, respectively. Univariate sensitivity analyses confirmed the dominant position of ticagrelor in the first five years and probabilistic sensitivity analyses showed a high probability of cost-effectiveness over a lifetime. CONCLUSION During the first five years after ACS, treatment with ticagrelor dominates generic clopidogrel in Switzerland. Over a patient's lifetime, ticagrelor is highly cost-effective compared with generic clopidogrel, proven by ICERs significantly below commonly accepted willingness-to-pay thresholds.
Resumo:
The possible involvement of potato (Solanum tuberosum L.) starch-branching enzyme I (PSBE-I) in the in vivo synthesis of phosphorylated amylopectin was investigated in in vitro experiments with isolated PSBE-I using 33P-labeled phosphorylated and 3H end-labeled nonphosphorylated α(1→4)glucans as the substrates. From these radiolabeled substrates PSBE-I was shown to catalyze the formation of dual-labeled (3H/33P) phosphorylated branched polysaccharides with an average degree of polymerization of 80 to 85. The relatively high molecular mass indicated that the product was the result of multiple chain-transfer reactions. The presence of α(1→6) branch points was documented by isoamylase treatment and anion-exchange chromatography. Although the initial steps of the in vivo mechanism responsible for phosphorylation of potato starch remains elusive, the present study demonstrates that the enzyme machinery available in potato has the ability to incorporate phosphorylated α(1→4)glucans into neutral polysaccharides in an interchain catalytic reaction. Potato mini tubers synthesized phosphorylated starch from exogenously supplied 33PO43− and [U-14C]Glc at rates 4 times higher than those previously obtained using tubers from fully grown potato plants. This system was more reproducible compared with soil-grown tubers and was therefore used for preparation of 33P-labeled phosphorylated α(1→4)glucan chains.