959 resultados para Vidro de Bose
Resumo:
Estudamos transições de fases quânticas em gases bosônicos ultrafrios aprisionados em redes óticas. A física desses sistemas é capturada por um modelo do tipo Bose-Hubbard que, no caso de um sistema sem desordem, em que os átomos têm interação de curto alcance e o tunelamento é apenas entre sítios primeiros vizinhos, prevê a transição de fases quântica superfluido-isolante de Mott (SF-MI) quando a profundidade do potencial da rede ótica é variado. Num primeiro estudo, verificamos como o diagrama de fases dessa transição muda quando passamos de uma rede quadrada para uma hexagonal. Num segundo, investigamos como a desordem modifica essa transição. No estudo com rede hexagonal, apresentamos o diagrama de fases da transição SF-MI e uma estimativa para o ponto crítico do primeiro lobo de Mott. Esses resultados foram obtidos usando o algoritmo de Monte Carlo quântico denominado Worm. Comparamos nossos resultados com os obtidos a partir de uma aproximação de campo médio e com os de um sistema com uma rede ótica quadrada. Ao introduzir desordem no sistema, uma nova fase emerge no diagrama de fases do estado fundamental intermediando a fase superfluida e a isolante de Mott. Essa nova fase é conhecida como vidro de Bose (BG) e a transição de fases quântica SF-BG que ocorre nesse sistema gerou muitas controvérsias desde seus primeiros estudos iniciados no fim dos anos 80. Apesar dos avanços em direção ao entendimento completo desta transição, a caracterização básica das suas propriedades críticas ainda é debatida. O que motivou nosso estudo, foi a publicação de resultados experimentais e numéricos em sistemas tridimensionais [Yu et al. Nature 489, 379 (2012), Yu et al. PRB 86, 134421 (2012)] que violam a lei de escala $\\phi= u z$, em que $\\phi$ é o expoente da temperatura crítica, $z$ é o expoente crítico dinâmico e $ u$ é o expoente do comprimento de correlação. Abordamos essa controvérsia numericamente fazendo uma análise de escalonamento finito usando o algoritmo Worm nas suas versões quântica e clássica. Nossos resultados demonstram que trabalhos anteriores sobre a dependência da temperatura de transição superfluido-líquido normal com o potencial químico (ou campo magnético, em sistemas de spin), $T_c \\propto (\\mu-\\mu_c)^\\phi$, estavam equivocados na interpretação de um comportamento transiente na aproximação da região crítica genuína. Quando os parâmetros do modelo são modificados de maneira a ampliar a região crítica quântica, simulações com ambos os modelos clássico e quântico revelam que a lei de escala $\\phi= u z$ [com $\\phi=2.7(2)$, $z=3$ e $ u = 0.88(5)$] é válida. Também estimamos o expoente crítico do parâmetro de ordem, encontrando $\\beta=1.5(2)$.
Resumo:
O presente trabalho consiste da realização de um estudo experimental sobre os efeitos das substituições químicas na irreversibilidade magnética e na magnetocondutividade do supercondutor YBa2Cu3O7-δ. Para tanto, o comportamento da linha de irreversibilidade magnética (LIM) bem como dos regimes de flutuações na magnetocondutividade foram pesquisados em amostras policristalinas e moncristalinas de YBa2-xSrxCu3O7-δ (x = 0, 0.1, 0.25, 0.37 e 0.5) e YBa2Cu2.97D0.03O7-δ (D = Zn ou Mg). Além de reduzir drasticamente o valor da temperatura crítica de transição, Tc, os dopantes introduzem um caráter granular nos monocristais. No monocristal puro, o comportamento da LIM é descrito pela lei de potências prevista pelo modelo de "flux creep" gigante para dinâmica de fluxo de Abrikosov convencional. Por outro lado, o comportamento da LIM para as amostras supercondutoras granulares apresenta características própias bastante relevantes. Os dados do limite de irreversibilidade, Tirr(H) seguem a lei de potência ditada pelas teorias de "flux creep" somente em altos campos magnéticos.Na região de baixos campos magnéticos, dois diferentes regimes de dinâmica de fluxo surgem: Nos campos magnéticos mais baixos que 1 kOe, os dados de Tirr(H) seguem uma lei de potência do tipo de Almeida-Thouleess (AT). Perto de 1 kOe, ocorre um "crossover" e em campos magnéticos intermediários passa a ter seu comportamento descrito por uma lei de potências do tipo Gabay-Toulouse (GT). A ocorrência de um comportamento AT-GT na LIM é a assinatura de um sistema frustrado onde a dinâmica de fluxo intergranular ou de Josephson é dominante. Na ausência de teorias específicas para este comportamento em baixos campos, descrevemos o comportamento da LIM de nossos supercondutores granulares, na região de baixo campo, em analogia aos sistemas vidros de spin. No entanto, o comportamento de Tirr(H) na região de altos campos, ocorre de acordo com a teoria de "flux creep" gigante. Particularmente, para valores acima de 20 kOe, a LIM nos monocristais de YBa2-xSrxCu3O7-δ para H // ab, exibe fortes propriedades direcionais para a orientação de H próximo aos planos de maclas (PMCs). Este comportamento é do tipo "cusp", similar ao observado em supercondutores com defeitos colunares, o qual caracteriza uma fase vidro de Bose. Por outro lado, a magnetoresistividade elétrica revela que a transição resistiva dos supercondutores granulares ocorre em duas etapas. Quando a temperatura é decrescida, inicialmente ocorre a transição de pareamento no interior dos grãos. Em temperaturas inferiores, na proximidade do estado de resistência nula, ocorre a transição de coerência, observada pela primeira vez num monocristal. Na transição de coerência, o parâmetro de ordem adquire ordem de longo alcance. Na região de temperaturas imediatamente acima de Tc, nossos resultados de flutuações na magnetocondutividade revelam a ocorrência de regimes críticos e Gaussianos. Abaixo de Tc, na região paracoerente, que antecede à transição de coerência, observaram-se regimes críticos cujo expoente é consistente com o esperado para o modelo 3D-XY com desordem relevante e dinâmica do tipo vidro de spin.
Resumo:
We describe a novel method of fabricating atom chips that are well suited to the production and manipulation of atomic Bose–Einstein condensates. Our chip was created using a silver foil and simple micro-cutting techniques without the need for photolithography. It can sustain larger currents than conventional chips, and is compatible with the patterning of complex trapping potentials. A near pure Bose–Einstein condensate of 4 × 104 87Rb atoms has been created in a magnetic microtrap formed by currents through wires on the chip. We have observed the fragmentation of atom clouds in close proximity to the silver conductors. The fragmentation has different characteristic features to those seen with copper conductors.
Resumo:
Para-Bose commutation relations are related to the SL(2,R) Lie algebra. The irreducible representation [script D]alpha of the para-Bose system is obtained as the direct sum Dbeta[direct-sum]Dbeta+1/2 of the representations of the SL(2,R) Lie algebra. The position and momentum eigenstates are then obtained in this representation [script D]alpha, using the matrix mechanical method. The orthogonality, completeness, and the overlap of these eigenstates are derived. The momentum eigenstates are also derived using the wave mechanical method by specifying the domain of the definition of the momentum operator in addition to giving it a formal differential expression. By a careful consideration in this manner we find that the two apparently different solutions obtained by Ohnuki and Kamefuchi in this context are actually unitarily equivalent. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator–to–superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.
Resumo:
The energy, position, and momentum eigenstates of a para-Bose oscillator system were considered in paper I. Here we consider the Bargmann or the analytic function description of the para-Bose system. This brings in, in a natural way, the coherent states ||z;alpha> defined as the eigenstates of the annihilation operator ?. The transformation functions relating this description to the energy, position, and momentum eigenstates are explicitly obtained. Possible resolution of the identity operator using coherent states is examined. A particular resolution contains two integrals, one containing the diagonal basis ||z;alpha>
Resumo:
Editor's Note: Satyendranath Bose, known primarily as one of the co–founders of quantum statistics, died on 4 February 1974, a few weeks after a symposium in honor of his 80th birthday was held at the Saha Institute for Nuclear Physics in Calcutta. The following paper, originally prepared in that connection, reviews some of the more important developments in particle physics which followed from the fundamental insight contained in a four–page paper published by Bose exactly fifty years ago. At the request of the editors of the AJP, Professor Sudarshan has kindly consented to adapt his paper for reproduction here. We would like to thank William Blanpied for bringing this paper to our attention.
Resumo:
We report our findings on the quantum phase transitions in cold bosonic atoms in a one-dimensional optical lattice using the finite-size density-matrix renormalization-group method in the framework of the extended Bose-Hubbard model. We consider wide ranges of values for the filling factors and the nearest-neighbor interactions. At commensurate fillings, we obtain two different types of charge-density wave phases and a Mott insulator phase. However, departure from commensurate fillings yields the exotic supersolid phase where both the crystalline and the superfluid orders coexist. In addition, we obtain the signatures for the solitary waves and the superfluid phase.
Resumo:
We have obtained the quantum phase diagram of a one-dimensional superconducting quantum dot lattice using the extended Bose-Hubbard model for different commensurabilities. We describe the nature of different quantum phases at the charge degeneracy point. We find a direct phase transition from the Mott insulating phase to the superconducting phase for integer band fillings of Cooper pairs. We predict explicitly the presence of two kinds of repulsive Luttinger liquid phases, besides the charge density wave and superconducting phases for half-integer band fillings. We also predict that extended range interactions are necessary to obtain the correct phase boundary of a one-dimensional interacting Cooper system. We have used the density matrix renormalization group method and Abelian bosonization to study our system.
Resumo:
For the first time, we find the complex solitons for a quasi-one-dimensional Bose-Einstein condensate with two-and three-body interactions. These localized solutions are characterized by a power law behaviour. Both dark and right solitons can be excited in the experimentally allowed parameter domain, when two-and three-body interactions are,respectively, repulsive and attractive. The dark solitons travel with a constant speed, which is quite different from the Lieb mode, where profiles with different speeds, bounded above by sound velocity, can exist for specified interaction strengths. We also study the properties of these solitons in the presence of harmonic confinement with time-dependent nonlinearity and loss. The modulational instability and the Vakhitov-Kolokolov criterion of stability are also studied.
Resumo:
We generalize the mean-field theory for the spinless Bose-Hubbard model to account for the different types of superfluid phases that can arise in the spin-1 case. In particular, our mean-field theory can distinguish polar and ferromagnetic superfluids, Mott insulator, that arise at integer fillings at zero temperature, and normal Bose liquids into which the Mott insulators evolve at finite temperatures. We find, in contrast to the spinless case, that several of the superfluid-Mott insulator transitions are of first order at finite temperatures. Our systematic study yields rich phase diagrams that include first-order and second-order transitions and a variety of tricritical points. We discuss the possibility of realizing such phase diagrams in experimental systems.
Resumo:
We use the Density Matrix Renormalization Group and the Abelian bosonization method to study the effect of density on quantum phases of one-dimensional extended Bose-Hubbard model. We predict the existence of supersolid phase and also other quantum phases for this system. We have analyzed the role of extended range interaction parameters on solitonic phase near half-filling. We discuss the effects of dimerization in nearest neighbor hopping and interaction as well as next nearest neighbor interaction on the plateau phase at half-filling.