945 resultados para Video-mapping systems
Resumo:
The report describes the state of the art video equipment used and experiences gained from the 6,800 mile field test. The first objective of this project was to determine if laser disc equipment could capture and store usable roadway images while operating in a mobile environment. The second objective was to evaluate methods of using optical disc storage and retrieval features to enhance highway planning and design function. Several highway departments have attempted to use video technology to replace the traditional 16 and 35 mm film format used in photologging. These attempts have met with limited success because of the distortion caused by video technology not being capable of dealing with highway speeds. The distortion has caused many highway signs to be unreadable and, therefore, clients have labeled the technology unusable. Two methods of using optical laser disc storage and retrieval have been successfully demonstrated by Wisconsin and Connecticut Departments of Transportation. Each method provides instantaneous retrieval and linking of images with other information. However, both methods gather the images using 35 mm film techniques. The 35 mm film image is then transferred to laser disc. Eliminating the film conversion to laser disc has potential for saving $4 to $5 per logging mile. In addition to a cost savings, the image would be available immediately as opposed to delays caused by film developing and transferring to laser disc. In June and November of 1986 Iowa DOT staff and cooperating equipment suppliers demonstrated the concept of direct image capture. The results from these tests were promising and an FHWA Demonstration program established. Since 1986 technology advancements have been incorporated into the design that further improve the image quality originally demonstrated.
Resumo:
Under multipath conditions, standard Video Intermediate Frequency (VIF) detectors generate a local oscillator phase error and consequently produce a dispersed non-ideal detected video signal due to the presence of additional IF carriers. The dispersed video causes problems when attempting to identify and remove the multipath interference, or ghosts, by the use of Digital Signal Processing and digital filtering. A digital phase lock system is presented which derives the correct phase for synchronous detection in the presence of multipath by using correlation information that has already been calculated as part of the deghosting process. As a result, the video deghoster system is made simpler, faster and more economical.
Resumo:
The project presents an explanation of the technique of video mapping, resource use, origin and use of the strands. Also conducts multidisciplinary literature review of concepts that can be applied to the technique of video mapping: Augmented Reality, Spatiality in Virtual and Real Environments. The project also introduces aspects of the history of cinema and audiovisual narrative. In addition conducts an inventory of software and hardware required for the technique of video mapping, reports performing experiments with the use of the technique and discusses the results obtained. As a contribution to development area, proposes to use video mapping as an augmented reality tool at an immersive experimental film language
Resumo:
A presente tese propõe uma metodologia de vídeo-mapeamento móvel georreferenciado a partir do desenvolvimento de protótipos que utilizam uma Interface de Geovisualização Multimídia para sincronizar o registro (em vídeo) de um local ou evento de interesse com a rota percorrida pelo veículo de inspeção (sobre mapa ou imagem), através da coleta de dados por sensores móveis: câmera digital, microfone, receptor GNSS e bússola digital. A interface permite a integração desses sensores com os atuais serviços de mapas digitais disponíveis na web. Sistemas como esse melhoram significativamente as análises temporais, a gestão e a tomada de decisão. A interface proposta e desenvolvida no presente trabalho é útil para muitas aplicações como ferramenta de monitoramento e inventário. Esta interface pode ser entendida como o componente visual de um sistema de mapeamento móvel ou como um sistema cartográfico alternativo ou complementar, para aplicações em que a precisão geométrica do receptor GNSS, na modalidade de navegação, é suficiente e sua acessibilidade, um fator competitivo. As aplicações desenvolvidas no presente trabalho foram duas: um sistema de monitoramento e inventário de placas de sinalização viária e um sistema de monitoramento de cheias/secas e inventário de propriedades na borda de reservatórios de hidroelétricas, ambos em pleno funcionamento.
Resumo:
Esta tesis presenta un estudio exhaustivo sobre la evaluación de la calidad de experiencia (QoE, del inglés Quality of Experience) percibida por los usuarios de sistemas de vídeo 3D, analizando el impacto de los efectos introducidos por todos los elementos de la cadena de procesamiento de vídeo 3D. Por lo tanto, se presentan varias pruebas de evaluación subjetiva específicamente diseñadas para evaluar los sistemas considerados, teniendo en cuenta todos los factores perceptuales relacionados con la experiencia visual tridimensional, tales como la percepción de profundidad y la molestia visual. Concretamente, se describe un test subjetivo basado en la evaluación de degradaciones típicas que pueden aparecer en el proceso de creación de contenidos de vídeo 3D, por ejemplo debidas a calibraciones incorrectas de las cámaras o a algoritmos de procesamiento de la señal de vídeo (p. ej., conversión de 2D a 3D). Además, se presenta el proceso de generación de una base de datos de vídeos estereoscópicos de alta calidad, disponible gratuitamente para la comunidad investigadora y que ha sido utilizada ampliamente en diferentes trabajos relacionados con vídeo 3D. Asimismo, se presenta otro estudio subjetivo, realizado entre varios laboratorios, con el que se analiza el impacto de degradaciones causadas por la codificación de vídeo, así como diversos formatos de representación de vídeo 3D. Igualmente, se describen tres pruebas subjetivas centradas en el estudio de posibles efectos causados por la transmisión de vídeo 3D a través de redes de televisión sobre IP (IPTV, del inglés Internet Protocol Television) y de sistemas de streaming adaptativo de vídeo. Para estos casos, se ha propuesto una innovadora metodología de evaluación subjetiva de calidad vídeo, denominada Content-Immersive Evaluation of Transmission Impairments (CIETI), diseñada específicamente para evaluar eventos de transmisión simulando condiciones realistas de visualización de vídeo en ámbitos domésticos, con el fin de obtener conclusiones más representativas sobre la experiencia visual de los usuarios finales. Finalmente, se exponen dos experimentos subjetivos comparando varias tecnologías actuales de televisores 3D disponibles en el mercado de consumo y evaluando factores perceptuales de sistemas Super Multiview Video (SMV), previstos a ser la tecnología futura de televisores 3D de consumo, gracias a una prometedora visualización de contenido 3D sin necesidad de gafas específicas. El trabajo presentado en esta tesis ha permitido entender los factores perceptuales y técnicos relacionados con el procesamiento y visualización de contenidos de vídeo 3D, que pueden ser de utilidad en el desarrollo de nuevas tecnologías y técnicas de evaluación de la QoE, tanto metodologías subjetivas como métricas objetivas. ABSTRACT This thesis presents a comprehensive study of the evaluation of the Quality of Experience (QoE) perceived by the users of 3D video systems, analyzing the impact of effects introduced by all the elements of the 3D video processing chain. Therefore, various subjective assessment tests are presented, particularly designed to evaluate the systems under consideration, and taking into account all the perceptual factors related to the 3D visual experience, such as depth perception and visual discomfort. In particular, a subjective test is presented, based on evaluating typical degradations that may appear during the content creation, for instance due to incorrect camera calibration or video processing algorithms (e.g., 2D to 3D conversion). Moreover, the process of generation of a high-quality dataset of 3D stereoscopic videos is described, which is freely available for the research community, and has been already widely used in different works related with 3D video. In addition, another inter-laboratory subjective study is presented analyzing the impact of coding impairments and representation formats of stereoscopic video. Also, three subjective tests are presented studying the effects of transmission events that take place in Internet Protocol Television (IPTV) networks and adaptive streaming scenarios for 3D video. For these cases, a novel subjective evaluation methodology, called Content-Immersive Evaluation of Transmission Impairments (CIETI), was proposed, which was especially designed to evaluate transmission events simulating realistic home-viewing conditions, to obtain more representative conclusions about the visual experience of the end users. Finally, two subjective experiments are exposed comparing various current 3D displays available in the consumer market, and evaluating perceptual factors of Super Multiview Video (SMV) systems, expected to be the future technology for consumer 3D displays thanks to a promising visualization of 3D content without specific glasses. The work presented in this thesis has allowed to understand perceptual and technical factors related to the processing and visualization of 3D video content, which may be useful in the development of new technologies and approaches for QoE evaluation, both subjective methodologies and objective metrics.
Resumo:
Video adaptation is an extensively explored content providing technique aimed at appropriately suiting several usage scenarios featured by different network requirements and constraints, user`s terminal and preferences. However, its usage in high-demand video distribution systems, such as CNDs, has been badly approached, ignoring several aspects of optimization of network use. To address such deficiencies, this paper presents an approach for implementing the adaptation service by exploring the concept of overlay services networks. As a result of demonstrate the benefits of this proposal, it is made a comparison of this proposed adaptation service with other strategies of video adaptation.
Resumo:
In video communication systems, the video signals are typically compressed and sent to the decoder through an error-prone transmission channel that may corrupt the compressed signal, causing the degradation of the final decoded video quality. In this context, it is possible to enhance the error resilience of typical predictive video coding schemes using as inspiration principles and tools from an alternative video coding approach, the so-called Distributed Video Coding (DVC), based on the Distributed Source Coding (DSC) theory. Further improvements in the decoded video quality after error-prone transmission may also be obtained by considering the perceptual relevance of the video content, as distortions occurring in different regions of a picture have a different impact on the user's final experience. In this context, this paper proposes a Perceptually Driven Error Protection (PDEP) video coding solution that enhances the error resilience of a state-of-the-art H.264/AVC predictive video codec using DSC principles and perceptual considerations. To increase the H.264/AVC error resilience performance, the main technical novelties brought by the proposed video coding solution are: (i) design of an improved compressed domain perceptual classification mechanism; (ii) design of an improved transcoding tool for the DSC-based protection mechanism; and (iii) integration of a perceptual classification mechanism in an H.264/AVC compliant codec with a DSC-based error protection mechanism. The performance results obtained show that the proposed PDEP video codec provides a better performing alternative to traditional error protection video coding schemes, notably Forward Error Correction (FEC)-based schemes. (C) 2013 Elsevier B.V. All rights reserved.
Advanced mapping of environmental data: Geostatistics, Machine Learning and Bayesian Maximum Entropy
Resumo:
This book combines geostatistics and global mapping systems to present an up-to-the-minute study of environmental data. Featuring numerous case studies, the reference covers model dependent (geostatistics) and data driven (machine learning algorithms) analysis techniques such as risk mapping, conditional stochastic simulations, descriptions of spatial uncertainty and variability, artificial neural networks (ANN) for spatial data, Bayesian maximum entropy (BME), and more.
Resumo:
It is known that certain video deghoster systems cannot fully process the induced signal derived from the quadrature carrier forming nature of the VSB filter under a multipath condition. A new deterministic IIR deghoster filter structure is given which is capable of deghosting terrestrial video for any relative ghost carrier phase.
Resumo:
A new generation of advanced surveillance systems is being conceived as a collection of multi-sensor components such as video, audio and mobile robots interacting in a cooperating manner to enhance situation awareness capabilities to assist surveillance personnel. The prominent issues that these systems face are: the improvement of existing intelligent video surveillance systems, the inclusion of wireless networks, the use of low power sensors, the design architecture, the communication between different components, the fusion of data emerging from different type of sensors, the location of personnel (providers and consumers) and the scalability of the system. This paper focuses on the aspects pertaining to real-time distributed architecture and scalability. For example, to meet real-time requirements, these systems need to process data streams in concurrent environments, designed by taking into account scheduling and synchronisation. The paper proposes a framework for the design of visual surveillance systems based on components derived from the principles of Real Time Networks/Data Oriented Requirements Implementation Scheme (RTN/DORIS). It also proposes the implementation of these components using the well-known middleware technology Common Object Request Broker Architecture (CORBA). Results using this architecture for video surveillance are presented through an implemented prototype.
Resumo:
Autonomous robots must be able to learn and maintain models of their environments. In this context, the present work considers techniques for the classification and extraction of features from images in joined with artificial neural networks in order to use them in the system of mapping and localization of the mobile robot of Laboratory of Automation and Evolutive Computer (LACE). To do this, the robot uses a sensorial system composed for ultrasound sensors and a catadioptric vision system formed by a camera and a conical mirror. The mapping system is composed by three modules. Two of them will be presented in this paper: the classifier and the characterizer module. The first module uses a hierarchical neural network to do the classification; the second uses techiniques of extraction of attributes of images and recognition of invariant patterns extracted from the places images set. The neural network of the classifier module is structured in two layers, reason and intuition, and is trained to classify each place explored for the robot amongst four predefine classes. The final result of the exploration is the construction of a topological map of the explored environment. Results gotten through the simulation of the both modules of the mapping system will be presented in this paper. © 2008 IEEE.
Resumo:
Indirect laryngoscopy allows practitioners to “see around the corner” of a patient’s airway during intubation. Inadequate airway management is a major contributor to patient injury, morbidity and mortality. The purpose of the present study was to evaluate the video quality of commercially available video laryngoscopy systems. A team of four investigators at the University of Nebraska at Omaha and the Peter Kiewit Institute performed intubation simulations using a number of video laryngoscopy systems. Testing was done with a Laerdal Difficult Airway Manikin (Laerdal Medical Corp., Wappingers Falls, NY) in a setting that simulated difficult airways, adverse lighting conditions and various system configurations (e.g., maximizing screen contrast, minimizing screen brightness, maximizing screen color hue, etc.).
Resumo:
This work has been realized by the author in his PhD course in Electronics, Computer Science and Telecommunication at the University of Bologna, Faculty of Engineering, Italy. The subject of this thesis regards important channel estimation aspects in wideband wireless communication systems, such as echo cancellation in digital video broadcasting systems and pilot aided channel estimation through an innovative pilot design in Multi-Cell Multi-User MIMO-OFDM network. All the documentation here reported is a summary of years of work, under the supervision of Prof. Oreste Andrisano, coordinator of Wireless Communication Laboratory - WiLab, in Bologna. All the instrumentation that has been used for the characterization of the telecommunication systems belongs to CNR (National Research Council), CNIT (Italian Inter-University Center), and DEIS (Dept. of Electronics, Computer Science, and Systems). From November 2009 to May 2010, the author spent his time abroad, working in collaboration with DOCOMO - Communications Laboratories Europe GmbH (DOCOMO Euro-Labs) in Munich, Germany, in the Wireless Technologies Research Group. Some important scientific papers, submitted and/or published on IEEE journals and conferences have been produced by the author.
Resumo:
A frame-level distortion model based on perceptual features of the human visual system is proposed to improve the performance of unequal error protection strategies and provide better quality of experience to users in Side-by-Side 3D video delivery systems.
Resumo:
One of the key factors for a given application to take advantage of cloud computing is the ability to scale in an efficient, fast and reliable way. In centralized multi-party video conferencing, dynamically scaling a running conversation is a complex problem. In this paper we propose a methodology to divide the Multipoint Control Unit (the video conferencing server) into more simple units, broadcasters. Each broadcaster receives the media from a participant, processes it and forwards it to the rest. These broadcasters can be distributed among a group of CPUs. By using this methodology, video conferencing systems can scale in a more granular way, improving the deployment.