798 resultados para Video-lectures
Resumo:
The year 2012 was the “boom year” in MOOC and all its outstanding growth until now, made us move forward in designing the first MOOC in our Institution (and the third in our country, Portugal). Most MOOC are video lectured based and the learning analytic process to these ones is just taking its first steps. Designing a video-lecture seems, at a first glance, very easy: one can just record a live lesson or lecture and turn it, directly, into a video-lecture (even here one may experience some “sound” and “camera” problems); but developing some engaging, appealing video-lecture, that motivates students to embrace knowledge and that really contributes to the teaching/learning process, it is not an easy task. Therefore questions like: “What kind of information can induce knowledge construction, in a video-lecture?”, “How can a professor interact in a video-lecture when he is not really there?”, “What are the video-lectures attributes that contribute the most to viewer’s engagement?”, “What seems to be the maximum “time-resistance” of a viewer?”, and many others, raised in our minds when designing video-lectures to a Mathematics MOOC from the scratch. We believe this technological resource can be a powerful tool to enhance students' learning process. Students that were born in digital/image era, respond and react slightly different to outside stimulus, than their teachers/professors ever did or do. In this article we will describe just how we have tried to overcome some of the difficulties and challenges we tackled when producing our own video-math-lectures and in what way, we feel, videos can contribute to the teaching and learning process at higher education level.
Resumo:
Educational videos differ from other teaching and learning technologies as they allow the benefit of using visual perception. Video lectures are not new to education, however with the use of innovative video technologies they can improve academic outcomes and extend the reach of education. They may offer extraordinary new experiences for higher education institutions (HEI). Through them lecturers can provide information and contents to students, and if used creatively, video lectures can become a powerful technological tool in education, inside and outside classrooms. Inside a classroom it can motivate students and improve topics’ debate and outside it is a good support for students’ self- learning. In some cases they can be used to work some subjects standing behind, but needed to support actual courses contents, that students do not remember (or were not even taught), opening an “in front to the past door” that backs students self-study. The student-educator dynamic is changing. Students are expecting exceptional instruction and educators are expecting students to be more and more well informed about subjects from online viewing.This article explores some of the potential benefits and challenges associated with the use of video lectures in the teaching and learning process at higher education. We will also discuss some thoughts and examples for the use of teaching materials to enhance student’s learning and try to understand how video can act as powerful and innovative to enlighten teaching and learning (note that unfortunately, sometimes, the opposite is happening).
Resumo:
In recent years there have been several proposals for alternative pedagogical practices. Most of these proposals are based in the, so called, “active learning”, in opposition to the common “passive learning”, which is centered on transmission of information inside classrooms as well as recognized as teacher-centered procedure. In an active learning pedagogical structure, students have a more participative role in the overall learning/teaching process, being encouraged to face new learning challenges like, for instance, solving problems and developing projects, in an autonomous approach trying to make them, consequently, able to build their own knowledge. The flipped or “inverted” classroom is one of these active learning pedagogical methodologies that emphasizes a learner-centered instruction. According to this approach, the first contact that students have with the content on a particular curriculum subject is not transmitted by the lecturer in the classroom, this teaching strategy requires students to assess and analyze the specific subject before attending to class, therefore the informational component from the lecture is the homework, and class time is dedicated to exercises and assignments, always with support from the instructor, who acts as a facilitator, helping students when needed and offering supplementary explanation as required. The main objective of this paper is to discuss and explore how the use of different types of instructional videos and online activities may be implemented in the flipped classroom procedure (as means of incorporating new content and teaching new competencies) and to describe students’ perceptions of this approach within a course in a Higher Education Institution (HEI), presenting some positive and negative features of this pedagogical practice.
Resumo:
The fast development of distance learning tools such as Open Educational Resources (OER) and Massive Open Online Courses (MOOC or MOOCs) are indicators of a shift in the way in which digital teaching and learning are understood. MOOC are a new style of online classes that allow any person with web access, anywhere, usually free of charge, to participate through video lectures, computer graded tests and discussion forums. They have been capturing the attention of many higher education institutions around the world. This paper will give us an overview of the “Introduction to Differential Calculus” a MOOC Project, created by an engaged volunteer team of Mathematics lecturers from four schools of the Polytechnic Institute of Oporto (IPP). The MOOC theories and their popularity are presented and complemented by a discussion of some MOOC definitions and their inherent advantages and disadvantages. It will also explore what MOOC mean for Mathematics education. The Project development is revealed by focusing on used MOOC structure, as well as the quite a lot of types of course materials produced. It ends with a presentation of a short discussion about problems and challenges met throughout the development of the project. It is also our goal to contribute for a change in the way teaching and learning Mathematics is seen and practiced nowadays, trying to make education more accessible to as many people as possible and increase our institution (IPP) recognition.
Resumo:
Distance learning - where students take courses (attend classes, get activities and other sort of learning materials) while being physically separated from their instructors, for larger part of the course duration - is far from being a “new event”. Since the middle of the nineteenth century, this has been done through Radio, Mail and TV, taking advantage of the full educational potential that these media resources had to offer at the time. However, in recent times we have, at our complete disposal, the “magic wonder” of communication and globalization - the Internet. Taking advantage of a whole new set of educational opportunities, with a more or less unselfish “look” to economic interests, focusing its concern on a larger and collective “welfare”, contributing to the development of a more “equitable” world, with regard to educational opportunities, the Massive Open Online Courses (MOOCs) were born and have become an important feature of the higher education in recent years. Many people have been talking about MOOCs as a potential educational revolution, which has arrived from North America, still growing and spreading, referring to its benefits and/or disadvantages. The Polytechnic Institute of Porto, also known as IPP, is a Higher Education Portuguese institution providing undergraduate and graduate studies, which has a solid history of online education and innovation through the use of technology, and it has been particularly interested and focused on MOOC developments, based on an open educational policy in order to try to implement some differentiated learning strategies to its actual students and as a way to attract future ones. Therefore, in July 2014, IPP launched the first Math MOOC on its own platform. This paper describes the requirements, the resulting design and implementation of a mathematics MOOC, which was essentially addressed to three target populations: - pre-college students or individuals wishing to update their Math skills or that need to prepare for the National Exam of Mathematics; - Higher Education students who have not attended in High School, this subject, and who feel the need to acquire basic knowledge about some of the topics covered; - High School Teachers who may use these resources with their students allowing them to develop teaching methodologies like "Flipped Classroom” (available at http://www.opened.ipp.pt/). The MOOC was developed in partnership with several professors from several schools from IPP, gathering different math competences and backgrounds to create and put to work different activities such video lectures and quizzes. We will also try to briefly discuss the advertising strategy being developed to promote this MOOC, since it is not offered through a main MOOC portal, such as Coursera or Udacity.
Resumo:
The wide use of e-technologies represents a great opportunity for underserved segments of the population, especially with the aim of reintegrating excluded individuals back into society through education. This is particularly true for people with different types of disabilities who may have difficulties while attending traditional on-site learning programs that are typically based on printed learning resources. The creation and provision of accessible e-learning contents may therefore become a key factor in enabling people with different access needs to enjoy quality learning experiences and services. Another e-learning challenge is represented by m-learning (which stands for mobile learning), which is emerging as a consequence of mobile terminals diffusion and provides the opportunity to browse didactical materials everywhere, outside places that are traditionally devoted to education. Both such situations share the need to access materials in limited conditions and collide with the growing use of rich media in didactical contents, which are designed to be enjoyed without any restriction. Nowadays, Web-based teaching makes great use of multimedia technologies, ranging from Flash animations to prerecorded video-lectures. Rich media in e-learning can offer significant potential in enhancing the learning environment, through helping to increase access to education, enhance the learning experience and support multiple learning styles. Moreover, they can often be used to improve the structure of Web-based courses. These highly variegated and structured contents may significantly improve the quality and the effectiveness of educational activities for learners. For example, rich media contents allow us to describe complex concepts and process flows. Audio and video elements may be utilized to add a “human touch” to distance-learning courses. Finally, real lectures may be recorded and distributed to integrate or enrich on line materials. A confirmation of the advantages of these approaches can be seen in the exponential growth of video-lecture availability on the net, due to the ease of recording and delivering activities which take place in a traditional classroom. Furthermore, the wide use of assistive technologies for learners with disabilities injects new life into e-learning systems. E-learning allows distance and flexible educational activities, thus helping disabled learners to access resources which would otherwise present significant barriers for them. For instance, students with visual impairments have difficulties in reading traditional visual materials, deaf learners have trouble in following traditional (spoken) lectures, people with motion disabilities have problems in attending on-site programs. As already mentioned, the use of wireless technologies and pervasive computing may really enhance the educational learner experience by offering mobile e-learning services that can be accessed by handheld devices. This new paradigm of educational content distribution maximizes the benefits for learners since it enables users to overcome constraints imposed by the surrounding environment. While certainly helpful for users without disabilities, we believe that the use of newmobile technologies may also become a fundamental tool for impaired learners, since it frees them from sitting in front of a PC. In this way, educational activities can be enjoyed by all the users, without hindrance, thus increasing the social inclusion of non-typical learners. While the provision of fully accessible and portable video-lectures may be extremely useful for students, it is widely recognized that structuring and managing rich media contents for mobile learning services are complex and expensive tasks. Indeed, major difficulties originate from the basic need to provide a textual equivalent for each media resource composing a rich media Learning Object (LO). Moreover, tests need to be carried out to establish whether a given LO is fully accessible to all kinds of learners. Unfortunately, both these tasks are truly time-consuming processes, depending on the type of contents the teacher is writing and on the authoring tool he/she is using. Due to these difficulties, online LOs are often distributed as partially accessible or totally inaccessible content. Bearing this in mind, this thesis aims to discuss the key issues of a system we have developed to deliver accessible, customized or nomadic learning experiences to learners with different access needs and skills. To reduce the risk of excluding users with particular access capabilities, our system exploits Learning Objects (LOs) which are dynamically adapted and transcoded based on the specific needs of non-typical users and on the barriers that they can encounter in the environment. The basic idea is to dynamically adapt contents, by selecting them from a set of media resources packaged in SCORM-compliant LOs and stored in a self-adapting format. The system schedules and orchestrates a set of transcoding processes based on specific learner needs, so as to produce a customized LO that can be fully enjoyed by any (impaired or mobile) student.
Resumo:
Mobile learning, in the past defined as learning with mobile devices, now refers to any type of learning-on-the-go or learning that takes advantage of mobile technologies. This new definition shifted its focus from the mobility of technology to the mobility of the learner (O'Malley and Stanton 2002; Sharples, Arnedillo-Sanchez et al. 2009). Placing emphasis on the mobile learner’s perspective requires studying “how the mobility of learners augmented by personal and public technology can contribute to the process of gaining new knowledge, skills, and experience” (Sharples, Arnedillo-Sanchez et al. 2009). The demands of an increasingly knowledge based society and the advances in mobile phone technology are combining to spur the growth of mobile learning. Around the world, mobile learning is predicted to be the future of online learning, and is slowly entering the mainstream education. However, for mobile learning to attain its full potential, it is essential to develop more advanced technologies that are tailored to the needs of this new learning environment. A research field that allows putting the development of such technologies onto a solid basis is user experience design, which addresses how to improve usability and therefore user acceptance of a system. Although there is no consensus definition of user experience, simply stated it focuses on how a person feels about using a product, system or service. It is generally agreed that user experience adds subjective attributes and social aspects to a space that has previously concerned itself mainly with ease-of-use. In addition, it can include users’ perceptions of usability and system efficiency. Recent advances in mobile and ubiquitous computing technologies further underline the importance of human-computer interaction and user experience (feelings, motivations, and values) with a system. Today, there are plenty of reports on the limitations of mobile technologies for learning (e.g., small screen size, slow connection), but there is a lack of research on user experience with mobile technologies. This dissertation will fill in this gap by a new approach in building a user experience-based mobile learning environment. The optimized user experience we suggest integrates three priorities, namely a) content, by improving the quality of delivered learning materials, b) the teaching and learning process, by enabling live and synchronous learning, and c) the learners themselves, by enabling a timely detection of their emotional state during mobile learning. In detail, the contributions of this thesis are as follows: • A video codec optimized for screencast videos which achieves an unprecedented compression rate while maintaining a very high video quality, and a novel UI layout for video lectures, which together enable truly mobile access to live lectures. • A new approach in HTTP-based multimedia delivery that exploits the characteristics of live lectures in a mobile context and enables a significantly improved user experience for mobile live lectures. • A non-invasive affective learning model based on multi-modal emotion detection with very high recognition rates, which enables real-time emotion detection and subsequent adaption of the learning environment on mobile devices. The technology resulting from the research presented in this thesis is in daily use at the School of Continuing Education of Shanghai Jiaotong University (SOCE), a blended-learning institution with 35.000 students.
Resumo:
In this article from the Spring 2008 issue of Directions Odette Hutchinson (Birmingham City University) details her experience introducing video lectures to first year business students studying the English legal system as part of a business law pathway.
Resumo:
Recently, massive open online courses (MOOCs) have been offering a new online approach in the field of distance learning and online education. A typical MOOC course consists of video lectures, reading material and easily accessible tests for students. For a computer programming course, it is important to provide interactive, dynamic, online coding exercises and more complex programming assignments for learners. It is expedient for the students to receive prompt feedback on their coding submissions. Although MOOC automated programme evaluation subsystem is capable of assessing source programme files that are in learning management systems, in MOOC systems there is a grader that is responsible for evaluating students’ assignments with the result that course staff would be required to assess thousands of programmes submitted by the participants of the course without the benefit of an automatic grader. This paper presents a new concept for grading programming submissions of students and improved techniques based on the Java unit testing framework that enables automatic grading of code chunks. Some examples are also given such as the creation of unique exercises by dynamically generating the parameters of the assignment in a MOOC programming course combined with the kind of coding style recognition to teach coding standards.
Resumo:
To subjectively and objectively compare an accessible interactive electronic library using Moodle with lectures for urology teaching of medical students. Forty consecutive fourth-year medical students and one urology teacher were exposed to two teaching methods (4 weeks each) in the form of problem-based learning: - lectures and - student-centered group discussion based on Moodle (modular object-oriented dynamic learning environment) full time online delivered (24/7) with video surgeries, electronic urology cases and additional basic principles of the disease process. All 40 students completed the study. While 30% were moderately dissatisfied with their current knowledge base, online learning course delivery using Moodle was considered superior to the lectures by 86% of the students. The study found the following observations: (1) the increment in learning grades ranged from 7.0 to 9.7 for students in the online Moodle course compared to 4.0-9.6 to didactic lectures; (2) the self-reported student involvement in the online course was characterized as large by over 60%; (3) the teacher-student interaction was described as very frequent (50%) and moderately frequent (50%); and (4) more inquiries and requisitions by students as well as peer assisting were observed from the students using the Moodle platform. The Moodle platform is feasible and effective, enthusing medical students to learn, improving immersion in the urology clinical rotation and encouraging the spontaneous peer assisted learning. Future studies should expand objective evaluations of knowledge acquisition and retention.
Resumo:
This contains the resources for the 'What to expect from lectures and seminars at the University of Southampton' session
Resumo:
lectures on high-voltage power engineering
Resumo:
This repository contains the coursework for group 7 - The Kamikaze Spanners for the module INFO2009. Our work consists of an educational movie/video on the legal and ethical issues raised by the use of Augmented Reality, a flyer in docx and pdf format and a readme.txt file. The two presenting slides used during lectures have also been uploaded to the repository, as per the coursework instructions. To view our video, please download and run it on any standard video player. Alternatively, our video can also be seen on Youtube: http://www.youtube.com/watch?v=ZYXJ7Ma4RrQ
Resumo:
This is a collection of 12 micro-lectures, to be used by students in advance of practical sessions. Durations range for 3 min to 10 min. Topics include: ****** 1. Introduction ****** 2. Data classes ****** 3. Matrices ****** 4. Getting help ****** 5. Index notation ****** 6. 1- and 2-dimensional data ****** 7. 3-dimensional data ****** 8. Booleans (True/False) ****** 9. Designing a programme (Algorithms) ****** 10. Flow control: If-then statements ****** 11. Flow control: For-do loops ****** 12. Making nicer figures ******
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física