926 resultados para Video-based gait analysis
Resumo:
L’analyse de la marche a émergé comme l’un des domaines médicaux le plus im- portants récemment. Les systèmes à base de marqueurs sont les méthodes les plus fa- vorisées par l’évaluation du mouvement humain et l’analyse de la marche, cependant, ces systèmes nécessitent des équipements et de l’expertise spécifiques et sont lourds, coûteux et difficiles à utiliser. De nombreuses approches récentes basées sur la vision par ordinateur ont été développées pour réduire le coût des systèmes de capture de mou- vement tout en assurant un résultat de haute précision. Dans cette thèse, nous présentons notre nouveau système d’analyse de la démarche à faible coût, qui est composé de deux caméras vidéo monoculaire placées sur le côté gauche et droit d’un tapis roulant. Chaque modèle 2D de la moitié du squelette humain est reconstruit à partir de chaque vue sur la base de la segmentation dynamique de la couleur, l’analyse de la marche est alors effectuée sur ces deux modèles. La validation avec l’état de l’art basée sur la vision du système de capture de mouvement (en utilisant le Microsoft Kinect) et la réalité du ter- rain (avec des marqueurs) a été faite pour démontrer la robustesse et l’efficacité de notre système. L’erreur moyenne de l’estimation du modèle de squelette humain par rapport à la réalité du terrain entre notre méthode vs Kinect est très prometteur: les joints des angles de cuisses (6,29◦ contre 9,68◦), jambes (7,68◦ contre 11,47◦), pieds (6,14◦ contre 13,63◦), la longueur de la foulée (6.14cm rapport de 13.63cm) sont meilleurs et plus stables que ceux de la Kinect, alors que le système peut maintenir une précision assez proche de la Kinect pour les bras (7,29◦ contre 6,12◦), les bras inférieurs (8,33◦ contre 8,04◦), et le torse (8,69◦contre 6,47◦). Basé sur le modèle de squelette obtenu par chaque méthode, nous avons réalisé une étude de symétrie sur différentes articulations (coude, genou et cheville) en utilisant chaque méthode sur trois sujets différents pour voir quelle méthode permet de distinguer plus efficacement la caractéristique symétrie / asymétrie de la marche. Dans notre test, notre système a un angle de genou au maximum de 8,97◦ et 13,86◦ pour des promenades normale et asymétrique respectivement, tandis que la Kinect a donné 10,58◦et 11,94◦. Par rapport à la réalité de terrain, 7,64◦et 14,34◦, notre système a montré une plus grande précision et pouvoir discriminant entre les deux cas.
Resumo:
We investigated the accuracy and reliability of observational kinematic gait assessments performed via a low-bandwidth Internet link (118 kbit/s) and a higher-speed Internet link (128 kbit/s). Twenty-four subjects were randomized to either bandwidth group. Gait was assessed with the Gait Assessment Rating Scale (GARS) in the traditional manner, which is from video-recordings, and with repeated measurements via the online method. Online assessment was found to provide as accurate a measure of gait performance as the traditional assessment (limits of agreement
Resumo:
Time motion analysis is extensively used to assess the demands of team sports. At present there is only limited information on the reliability of measurements using this analysis tool. The aim of this study was to establish the reliability of an individual observer's time motion analysis of rugby union. Ten elite level rugby players were individually tracked in Southern Hemisphere Super 12 matches using a digital video camera. The video footage was subsequently analysed by a single researcher on two occasions one month apart. The test-retest reliability was quantified as the typical error of measurement (TEM) and rated as either good (10% TEM). The total time spent in the individual movements of walking, jogging, striding, sprinting, static exertion and being stationary had moderate to poor reliability (5.8-11.1% TEM). The frequency of individual movements had good to poor reliability (4.3-13.6% TEM), while the mean duration of individual movements had moderate reliability (7.1-9.3% TEM). For the individual observer in the present investigation, time motion analysis was shown to be moderately reliable as an evaluation tool for examining the movement patterns of players in competitive rugby. These reliability values should be considered when assessing the movement patterns of rugby players within competition.
Resumo:
À mesure que la population des personnes agées dans les pays industrialisés augmente au fil de années, les ressources nécessaires au maintien du niveau de vie de ces personnes augmentent aussi. Des statistiques montrent que les chutes sont l’une des principales causes d’hospitalisation chez les personnes agées, et, de plus, il a été démontré que le risque de chute d’une personne agée a une correlation avec sa capacité de maintien de l’équilibre en étant debout. Il est donc d’intérêt de développer un système automatisé pour analyser l’équilibre chez une personne, comme moyen d’évaluation objective. Dans cette étude, nous avons proposé l’implémentation d’un tel système. En se basant sur une installation simple contenant une seule caméra sur un trépied, on a développé un algorithme utilisant une implémentation de la méthode de détection d’objet de Viola-Jones, ainsi qu’un appariement de gabarit, pour suivre autant le mouvement latéral que celui antérieur-postérieur d’un sujet. On a obtenu des bons résultats avec les deux types de suivi, cependant l’algorithme est sensible aux conditions d’éclairage, ainsi qu’à toute source de bruit présent dans les images. Il y aurait de l’intérêt, comme développement futur, d’intégrer les deux types de suivi, pour ainsi obtenir un seul ensemble de données facile à interpréter.
Resumo:
This thesis describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple localized image features such as moments extracted from orthogonal view video silhouettes of human walking motion. A suite of time-integration methods, spanning a range of coarseness of time aggregation and modeling of feature distributions, are applied to these image features to create a suite of gait sequence representations. Despite their simplicity, the resulting feature vectors contain enough information to perform well on human identification and gender classification tasks. We demonstrate the accuracy of recognition on gait video sequences collected over different days and times and under varying lighting environments. Each of the integration methods are investigated for their advantages and disadvantages. An improved gait representation is built based on our experiences with the initial set of gait representations. In addition, we show gender classification results using our gait appearance features, the effect of our heuristic feature selection method, and the significance of individual features.
Resumo:
This study was performed to check if recommendations based on three-dimensional gait analysis (3DGA) are associated with better postoperative outcomes in patients with cerebral palsy (CP). Thirty-eight patients who underwent orthopedic surgery and assessment at the Gait Analysis Laboratory were evaluated retrospectively. The patients were divided in four groups according to the agreement between the recommendations from gait analysis and the procedures actually carried out. Fifteen patients with diplegic spastic cerebral palsy and indication for orthopedic surgery to improve walking - and whose surgical intervention was postponed - were also included in the study as a control group. Fourteen gait parameters recorded before and after treatment, were included in the statistical analysis. No gait improvement was noted in the control group or inh patients on whom no procedures recommended by the gait exam were performed (agreement of 0%). In the other groups, agreements averaged 46.71%, 72.2%, and 100%, respectively. Improvement of gait parameters after treatment was observed in these groups, with more significant values directly related to increased agreement percentage. Therefore, in this study the patients whose treatment matched the recommendations from three-dimensional gait analysis showed a more significant improvement in walking. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper studies periodic gaits of multi-legged locomotion systems based on dynamic models. The purpose is to determine the system performance during walking and the best set of locomotion variables. For that objective the prescribed motion of the robot is completely characterized in terms of several locomotion variables such as gait, duty factor, body height, step length, stroke pitch, foot clearance, legs link lengths, foot-hip offset, body and legs mass and cycle time. In this perspective, we formulate three performance measures of the walking robot namely, the mean absolute energy, the mean power dispersion and the mean power lost in the joint actuators per walking distance. A set of model-based experiments reveals the influence of the locomotion variables in the proposed indices.
Resumo:
A child's natural gait pattern may be affected by the gait laboratory environment. Wearable devices using body-worn sensors have been developed for gait analysis. The purpose of this study was to validate and explore the use of foot-worn inertial sensors for the measurement of selected spatio-temporal parameters, based on the 3D foot trajectory, in independently walking children with cerebral palsy (CP). We performed a case control study with 14 children with CP aged 6-15 years old and 15 age-matched controls. Accuracy and precision of the foot-worn device were measured using an optical motion capture system as the reference system. Mean accuracy±precision for both groups was 3.4±4.6cm for stride length, 4.3±4.2cm/s for speed and 0.5±2.9° for strike angle. Longer stance and shorter swing phases with an increase in double support were observed in children with CP (p=0.001). Stride length, speed and peak angular velocity during swing were decreased in paretic limbs, with significant differences in strike and lift-off angles. Children with cerebral palsy showed significantly higher inter-stride variability (measured by their coefficient of variation) for speed, stride length, swing and stance. During turning trajectories speed and stride length decreased significantly (p<0.01) for both groups, whereas stance increased significantly (p<0.01) in CP children only. Foot-worn inertial sensors allowed us to analyze gait spatiotemporal data outside a laboratory environment with good accuracy and precision and congruent results with what is known of gait variations during linear walking in children with CP.
Resumo:
Introduction: Ankle arthropathy is associated with a decreased motion of the ankle-hindfoot during ambulation. Ankle arthrodesis was shown to result in degeneration of the neighbour joints of the foot. Inversely, total ankle arthroplasty conceptually preserves the adjacent joints because of the residual mobility of the ankle but this has not been demonstrated yet in vivo. It has also been reported that degenerative ankle diseases, and even arthrodesis, do not result in alteration of the knee and hip joints. We present the preliminary results of a new approach of this problem based on ambulatory gait analysis. Patients and Methods: Motion analysis of the lower limbs was performed using a Physilog® (BioAGM, CH) system consisting of three-dimensional (3D) accelerometer and gyroscope, coupled to a magnetic system (Liberty©, Polhemus, USA). Both systems have been validated. Three groups of two patients were included into this pilot study and compared to healthy subjects (controls) during level walking: patients with ankle osteoarthritis (group 1), patients treated by ankle arthrodesis (group 2), patients treated by total ankle prosthesis (group 3). Results: Motion patterns of all analyzed joints over more than 20 gait cycles in each subject were highly repeatable. Motion amplitude of the ankle-hindfoot in control patients was similar to recently reported results. Ankle arthrodesis limited the motion of the ankle-hindfoot in the sagittal and horizontal planes. The prosthetic ankle allowed a more physiologic movement in the sagittal plane only. Ankle arthritis and its treatments did not influence the range of motion of the knee and hip joint during stance phase, excepted for a slight decrease of the hip flexion in groups 1 and 2. Conclusion: The reliability of the system was shown by the repeatability of the consecutive measurements. The results of this preliminary study were similar to those obtained through laboratory gait analysis. However, our system has the advantage to allow ambulatory analysis of 3D kinematics of the lower limbs outside of a gait laboratory and in real life conditions. To our knowledge this is a new concept in the analysis of ankle arthropathy and its treatments. Therefore, there is a potential to address specific questions like the difficult comparison of the benefits of ankle arthroplasty versus arthrodesis. The encouraging results of this pilot study offer the perspective to analyze the consequences of ankle arthropathy and its treatments on the biomechanics of the lower limbs ambulatory, in vivo and in daily life conditions.
Resumo:
Tripping is considered a major cause of fall in older people. Therefore, foot clearance (i.e., height of the foot above ground during swing phase) could be a key factor to better understand the complex relationship between gait and falls. This paper presents a new method to estimate clearance using a foot-worn and wireless inertial sensor system. The method relies on the computation of foot orientation and trajectory from sensors signal data fusion, combined with the temporal detection of toe-off and heel-strike events. Based on a kinematic model that automatically estimates sensor position relative to the foot, heel and toe trajectories are estimated. 2-D and 3-D models are presented with different solving approaches, and validated against an optical motion capture system on 12 healthy adults performing short walking trials at self-selected, slow, and fast speed. Parameters corresponding to local minimum and maximum of heel and toe clearance were extracted and showed accuracy ± precision of 4.1 ± 2.3 cm for maximal heel clearance and 1.3 ± 0.9 cm for minimal toe clearance compared to the reference. The system is lightweight, wireless, easy to wear and to use, and provide a new and useful tool for routine clinical assessment of gait outside a dedicated laboratory.
Resumo:
Gait analysis methods to estimate spatiotemporal measures, based on two, three or four gyroscopes attached on lower limbs have been discussed in the literature. The most common approach to reduce the number of sensing units is to simplify the underlying biomechanical gait model. In this study, we propose a novel method based on prediction of movements of thighs from movements of shanks. Datasets from three previous studies were used. Data from the first study (ten healthy subjects and ten with Parkinson's disease) were used to develop and calibrate a system with only two gyroscopes attached on shanks. Data from two other studies (36 subjects with hip replacement, seven subjects with coxarthrosis, and eight control subjects) were used for comparison with the other methods and for assessment of error compared to a motion capture system. Results show that the error of estimation of stride length compared to motion capture with the system with four gyroscopes and our new method based on two gyroscopes was close ( -0.8 ±6.6 versus 3.8 ±6.6 cm). An alternative with three sensing units did not show better results (error: -0.2 ±8.4 cm). Finally, a fourth that also used two units but with a simpler gait model had the highest bias compared to the reference (error: -25.6 ±7.6 cm). We concluded that it is feasible to estimate movements of thighs from movements of shanks to reduce number of needed sensing units from 4 to 2 in context of ambulatory gait analysis.
Resumo:
In this paper we present a novel approach to detect people meeting. The proposed approach works by translating people behaviour from trajectory information into semantic terms. Having available a semantic model of the meeting behaviour, the event detection is performed in the semantic domain. The model is learnt employing a soft-computing clustering algorithm that combines trajectory information and motion semantic terms. A stable representation can be obtained from a series of examples. Results obtained on a series of videos with different types of meeting situations show that the proposed approach can learn a generic model that can effectively be applied on the behaviour recognition of meeting situations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In schizophrenia, nonverbal behavior, including body movement, is of theoretical and clinical importance. Although reduced nonverbal expressiveness is a major component of the negative symptoms encountered in schizophrenia, few studies have objectively assessed body movement during social interaction. In the present study, 378 brief, videotaped role-play scenes involving 27 stabilized outpatients diagnosed with paranoid-type schizophrenia were analyzed using Motion Energy Analysis (MEA). This method enables the objective measuring of body movement in conjunction with ordinary video recordings. Correlations between movement parameters (percentage of time in movement, movement speed) and symptom ratings from independent PANSS interviews were calculated. Movement parameters proved to be highly reliable. In keeping with predictions, reduced movement and movement speed correlated with negative symptoms. Accordingly, in patients who exhibited noticeable movement for less than 20% of the observation time, prominent negative symptoms were highly probable. As a control measure, the percentage of movement exhibited by the patients during role-play scenes was compared to that of their normal interactants. Patients with negative symptoms differed from normal interactants by showing significantly reduced head and body movement. Two specific positive symptoms were possibly related to movement parameters: suspiciousness tended to correlate with reduced head movement, and the expression of unusual thought content tended to relate to increased movement. Overall, a close and theoretically meaningful association between the objective movement parameters and the symptom profiles was found. MEA appears to be an objective, reliable and valid method for quantifying nonverbal behavior, an aspect which may furnish new insights into the processes related to reduced expressiveness in schizophrenia.
Resumo:
Despite long-standing calls for patient-focused research on individuals with generalized anxiety spectrum disorder there is little systematized knowledge about the in-session behaviors of these patients. The primary objective of this study was to describe of in-session trajectories of the patients' level of explication (as an indicator of an elaborated exposure of negative emotionality) and the patients' focus on their own resources and how these trajectories are associated with post-treatment outcome. In respect to GAD patients, a high level of explication might be seen as an indicator of successful exposure of avoided negative emotionality during therapy sessions. Observers made minute-by-minute ratings of 1100 minutes of video of 20 patients-therapists dyads. The results indicated that a higher level of explication generally observed at a later stage during the therapy sessions and the patients' focus on competencies at an early stage was highly associated with positive therapy outcome at assessment at post treatment, independent of pretreatment distress, rapid response of well-being and symptom reduction, as well as the therapists' professional experience and therapy lengths. These results will be discussed under the perspective of emotion regulation of patients and therapist's counterregulation. It is assumed that GAD-Patients are especially skilled in masking difficult emotions. Explication level and emotion regulation are important variables for this patient group but there's relation to outcome is different.