997 resultados para Vibration isolation
Resumo:
The mechanisms of helicopter flight create a unique, high-vibration environment which can play havoc with the accurate operation of on-board sensors. Vibration isolation of electronic sensors from structural borne oscillations is paramount to their reliable and accurate use. Effective isolation is achieved by realising a trade-off between the properties of the suspended instrument package, and the isolation mechanism. This is made more difficult as the weight and size of the sensors and computing hardware decreases with advances in technology. This paper presents a history of the design, challenges, constraints and construction of an integrated isolated vision and sensor platform and landing gear for the CSIRO autonomous X-Cell helicopter. The results of isolation performance and in-flight tests of the platform in autonomous flight are presented.
Resumo:
A vibration isolator is described which incorporates a near-zero-spring-rate device within its operating range. The device is an assembly of a vertical spring in parallel with two inclined springs. A low spring rate is achieved by combining the equivalent stiffness in the vertical direction of the inclined springs with the stiffness of the vertical central spring. It is shown that there is a relation between the geometry and the stiffness of the individual springs that results in a low spring rate. Computer simulation studies of a single-degree-of-freedom model for harmonic base input show that the performance of the proposed scheme is superior to that of the passive schemes with linear springs and skyhook damping configuration. The response curves show that, for small to large amplitudes of base disturbance, the system goes into resonance at low frequencies of excitation. Thus, it is possible to achieve very good isolation over a wide low-frequency band. Also, the damper force requirements for the proposed scheme are much lower than for the damper force of a skyhook configuration or a conventional linear spring with a semi-active damper.
Resumo:
Reaction wheel assemblies (RWAs) are momentum exchange devices used in fine pointing control of spacecrafts. Even though the spinning rotor of the reaction wheel is precisely balanced to minimize emitted vibration due to static and dynamic imbalances, precision instrument payloads placed in the neighborhood can always be severely impacted by residual vibration forces emitted by reaction wheel assemblies. The reduction of the vibration level at sensitive payloads can be achieved by placing the RWA on appropriate mountings. A low frequency flexible space platform consisting of folded continuous beams has been designed to serve as a mount for isolating a disturbance source in precision payloads equipped spacecrafts. Analytical and experimental investigations have been carried out to test the usefulness of the low frequency flexible platform as a vibration isolator for RWAs. Measurements and tests have been conducted at varying wheel speeds, to quantify and characterize the amount of isolation obtained from the reaction wheel generated vibration. These tests are further extended to other variants of similar design in order to bring out the best isolation for given disturbance loads. Both time and frequency domain analysis of test data show that the flexible beam platform as a mount for reaction wheels is quite effective and can be used in spacecrafts for passive vibration control. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A nonlinear spring element of a vibration isolator should ideally possess high static and low dynamic stiffness. A buckled beam may be a good candidate to fulfil this requirement provided its internal resonance frequencies are high enough to achieve a wide frequency range of isolation. If a straight beam is used, there is a singularity in the force-displacement characteristic. To smooth this characteristic and eliminate the singularity at the buckling point, beams with initial constant curvature along their length are investigated here as an alternative to the buckled straight beam. Their force displacement characteristics are compared with different initial curvature and with a straight buckled beam. The minimum achievable dynamic stiffness with its corresponding static stiffness is compared for different initial curvatures. A case study is considered where the beams are optimized to isolate a one kilogram mass and to achieve a natural frequency of 1 Hz, considering small amplitudes of vibration. Resonance frequencies of the optimized beams for different curvature are presented. It is shown that an order of magnitude reduction in stiffness compared with a linear spring is achievable, while the internal resonance frequencies of the curved beam are high enough to achieve an acceptable frequency range of isolation.
Resumo:
This paper investigates the most desirable configuration of a two-stage nonlinear vibration isolation system, in which the isolators contain hardening geometric stiffness nonlinearity and linear viscous damping. The force transmissibility of the system is used as the measure of the effectiveness of the isolation system. The hardening nonlinearity is achieved by placing horizontal springs onto the suspended and intermediate masses, which are supported by vertical springs. It is found that nonlinearity in the upper stage has very little effect and thus serves little purpose. The nonlinearity in the lower stage, however, has a profound effect, and can significantly improve the effectiveness of the isolation system. Further, it is found that it is desirable to have high damping in the upper stage and very low damping in the lower stage. © 2012 Elsevier Ltd.
Resumo:
Linear single-stage vibration isolation systems have a limitation on their performance, which can be overcome passively by using linear two-stage isolations systems. It has been demonstrated by several researchers that linear single-stage isolation systems can be improved upon by using nonlinear stiffness elements, especially for low-frequency vibrations. In this paper, an investigation is conducted into whether the same improvements can be made to a linear two-stage isolation system using the same methodology for both force and base excitation. The benefits of incorporating geometric stiffness nonlinearity in both upper and lower stages are studied. It is found that there are beneficial effects of using nonlinearity in the stiffness in both stages for both types of excitation. Further, it is found that this nonlinearity causes the transmissibility at the lower resonance frequency to bend to the right, but the transmissibility at the higher resonance frequency is not affected in the same way. Generally, it is found that a nonlinear two-stage system has superior isolation performance compared to that of a linear two-stage isolator.
Resumo:
[EN]This paper is concerned with the vibration isolation efficiency analysis of total or partially buried thin walled wave barriers in poroelastic soils. A two-dimensional time harmonic model that treats soils and structures in a direct way by combining appropriately the conventional Boundary Element Method (BEM), the Dual BEM (DBEM) and the Finite Element Method es developed to this aim.
Resumo:
The paper deals with a rational approach to the development of general design criteria for non-dissipative vibration isolation systems. The study covers straight-through springmass systems as well as branched ones with dynamic absorbers. Various design options, such as the addition of another spring-mass pair, replacement of an existing system by one with more spring-mass pairs for the same space and material requirements, provision of one or more dynamic absorbers for the desired frequency range, etc., are investigated quantitatively by means of an algebraic algorithm which enables one to write down straightaway the velocity ratio and hence transmissibility of a linear dynamical system in terms of the constituent parameters.
Resumo:
Jacket platform is the most widely used offshore platform. Steel rubber vibration isolator and damping isolation system are often used to reduce or isolate the ice-induced and seismic-induced vibrations. The previous experimental and theoretical studies concern mostly with dynamic properties, vibration isolation schemes and vibration-reduction effectiveness analysis. In this paper, the experiments on steel rubber vibration isolator were carried out to investigate the compressive properties and fatigue properties in different low temperature conditions. The results may provide some guidelines for design of steel rubber vibration isolator for offshore platform in a cold environment, and for maintenance and replacement of steel rubber vibration isolator, and also for fatigue life assessment of the steel rubber vibration isolator. (C) 2009 Elsevier Ltd. All rights reserved.