999 resultados para Vertical Misalignment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of the extensive usage of continuous welded rails, a number of rail joints still exist in the track. Although a number of them exist as part of turnouts in the yards where the speed is not of concern, the Insultated Rail Joints (IRJs) that exist in ballasted tracks remain a source of significant impact loading. A portion of the dynamic load generated at the rail joints due to wheel passage is transmitted to the support system which leads to permanent settlements of the ballast layer with subsequent vertical misalignment of the sleepers around the rail joints. The vertical misalignment of the adjacent sleepers forms a source of high frequency dynamic load raisers causing significant maintenance work including localised grinding of railhead around the joint, re-alignment of the sleepers and/or ballast tamping or track component renewals/repairs. These localised maintenance activities often require manual inspections and disruptions to the train traffic loading to significant costs to the rail industry. Whilst a number of studies have modelled the effect of joints as dips, none have specifically attended to the effect of vertical misalignment of the sleepers on the dynamic response of rail joints. This paper presents a coupled finite element track model and rigid body track-vehicle interaction model through which the effects of vertical of sleepers on the increase in dynamic loads around the IRJ are studied. The finite element track model is employed to determine the generated dip from elastic deformations as well as the vertical displacement of sleepers around the joint. These data (dip and vertical misalignments) are then imported into the rigid body vehicle-track interaction model to calculate the dynamic loads.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Although significant amounts of vertical misalignment could have a noticeable effect on visual performance, there is no conclusive evidence about the effect of very small amount of vertical disparity on stereopsis and binocular vision. Hence, the aim of this study was to investigate the effects of induced vertical disparity on local and global stereopsis at near. Materials and Methods: Ninety participants wearing best-corrected refraction had local and global stereopsis tested with 0.5 and 1.0 prism diopter (Δ) vertical prism in front of their dominant and non-dominant eye in turn. This was compared to local and global stereopsis in the same subjects without vertical prism. Data were analyzed in SPSS.17 software using the independent samples T and the repeated measures ANOVA tests. Results: Induced vertical disparity decreases local and global stereopsis. This reduction is greater when vertical disparity is induced in front of the non-dominant eye and affects global more than local stereopsis. Repeated measures ANOVA showed differences in the mean stereopsis between the different measured states for local and global values. Local stereopsis thresholds were reduced by 10s of arc or less on average with 1.0Δ of induced vertical prism in front of either eye. However, global stereopsis thresholds were reduced by over 100s of arc by the same 1.0Δ of induced vertical prism. Conclusion: Induced vertical disparity affects global stereopsis thresholds by an order of magnitude (or a factor of 10) more than local stereopsis. Hence, using a test that measures global stereopsis such as the TNO is more sensitive to vertical misalignment than a test such as the Stereofly that measures local stereopsis. © 2014 Informa Healthcare USA, Inc. All rights reserved: reproduction in whole or part not permitted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1.5 mu m DFB LD butt-joint integrated with vertical tapered spotsize converter was fabricated by LP-MOVPE. The vertical far field angle (FWHM) was decreased from 34degrees to 10degrees the threshold currents was as low as 19.8mA, the output power was 9.6mw at 100mA without HR coating and the SMSR was 35.8dB. The 1-dBm misalignment tolerance was 3.2 mu m, while the counterpart of the device without SSC was 2.2 mu m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential axial shortening, distortion and deformation in high rise buildings is a serious concern. They are caused by three time dependent modes of volume change; “shrinkage”, “creep” and “elastic shortening” that takes place in every concrete element during and after construction. Vertical concrete components in a high rise building are sized and designed based on their strength demand to carry gravity and lateral loads. Therefore, columns and walls are sized, shaped and reinforced differently with varying concrete grades and volume to surface area ratios. These structural components may be subjected to the detrimental effects of differential axial shortening that escalates with increasing the height of buildings. This can have an adverse impact on other structural and non-structural elements. Limited procedures are available to quantify axial shortening, and the results obtained from them differ because each procedure is based on various assumptions and limited to few parameters. All these prompt to a need to develop an accurate numerical procedure to quantify the axial shortening of concrete buildings taking into account the important time varying functions of (i) construction sequence (ii) Young’s Modulus and (iii) creep and shrinkage models associated with reinforced concrete. General assumptions are refined to minimize variability of creep and shrinkage parameters to improve accuracy of the results. Finite element techniques are used in the procedure that employs time history analysis along with compression only elements to simulate staged construction behaviour. This paper presents such a procedure and illustrates it through an example. Keywords: Differential Axial Shortening, Concrete Buildings, Creep and Shrinkage, Construction Sequence, Finite Element Method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many interesting phenomena have been observed in layers of granular materials subjected to vertical oscillations; these include the formation of a variety of standing wave patterns, and the occurrence of isolated features called oscillons, which alternately form conical heaps and craters oscillating at one-half of the forcing frequency. No continuum-based explanation of these phenomena has previously been proposed. We apply a continuum theory, termed the double-shearing theory, which has had success in analyzing various problems in the flow of granular materials, to the problem of a layer of granular material on a vertically vibrating rigid base undergoing vertical oscillations in plane strain. There exists a trivial solution in which the layer moves as a rigid body. By investigating linear perturbations of this solution, we find that at certain amplitudes and frequencies this trivial solution can bifurcate. The time dependence of the perturbed solution is governed by Mathieu’s equation, which allows stable, unstable and periodic solutions, and the observed period-doubling behaviour. Several solutions for the spatial velocity distribution are obtained; these include one in which the surface undergoes vertical velocities that have sinusoidal dependence on the horizontal space dimension, which corresponds to the formation of striped standing waves, and is one of the observed patterns. An alternative continuum theory of granular material mechanics, in which the principal axes of stress and rate-of-deformation are coincident, is shown to be incapable of giving rise to similar instabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on a study investigating preferred driving speeds and frequency of speeding of 320 Queensland drivers. Despite growing community concern about speeding and extensive research linking it to road trauma, speeding remains a pervasive, and arguably, socially acceptable behaviour. This presents an apparent paradox regarding the mismatch between beliefs and behaviours, and highlights the necessity to better understand the factors contributing to speeding. Utilising self-reported behaviour and attitudinal measures, results of this study support the notion of a speed paradox. Two thirds of participants agreed that exceeding the limit is not worth the risks nor is it okay to exceed the posted limit. Despite this, more than half (58.4%) of the participants reported a preference to exceed the 100km/hour speed limit, with one third preferring to do so by 10 to 20 km/hour. Further, mean preferred driving speeds on both urban and open roads suggest a perceived enforcement tolerance of 10%, suggesting that posted limits have limited direct influence on speed choice. Factors that significantly predicted the frequency of speeding included: exposure to role models who speed; favourable attitudes to speeding; experiences of punishment avoidance; and the perceived certainty of punishment for speeding. These findings have important policy implications, particularly relating to the use of enforcement tolerances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Approach with Vertical Guidance (APV) is an instrument approach procedure which provides horizontal and vertical guidance to a pilot on approach to landing in reduced visibility conditions. APV approaches can greatly reduce the safety risk to general aviation by improving the pilot’s situational awareness. In particular the incidence of Controlled Flight Into Terrain (CFIT) which has occurred in a number of fatal air crashes in general aviation over the past decade in Australia, can be reduced. APV approaches can also improve general aviation operations. If implemented at Australian airports, APV approach procedures are expected to bring a cost saving of millions of dollars to the economy due to fewer missed approaches, diversions and an increased safety benefit. The provision of accurate horizontal and vertical guidance is achievable using the Global Positioning System (GPS). Because aviation is a safety of life application, an aviation-certified GPS receiver must have integrity monitoring or augmentation to ensure that its navigation solution can be trusted. However, the difficulty with the current GPS satellite constellation alone meeting APV integrity requirements, the susceptibility of GPS to jamming or interference and the potential shortcomings of proposed augmentation solutions for Australia such as the Ground-based Regional Augmentation System (GRAS) justifies the investigation of Aircraft Based Augmentation Systems (ABAS) as an alternative integrity solution for general aviation. ABAS augments GPS with other sensors at the aircraft to help it meet the integrity requirements. Typical ABAS designs assume high quality inertial sensors to provide an accurate reference trajectory for Kalman filters. Unfortunately high-quality inertial sensors are too expensive for general aviation. In contrast to these approaches the purpose of this research is to investigate fusing GPS with lower-cost Micro-Electro-Mechanical System (MEMS) Inertial Measurement Units (IMU) and a mathematical model of aircraft dynamics, referred to as an Aircraft Dynamic Model (ADM) in this thesis. Using a model of aircraft dynamics in navigation systems has been studied before in the available literature and shown to be useful particularly for aiding inertial coasting or attitude determination. In contrast to these applications, this thesis investigates its use in ABAS. This thesis presents an ABAS architecture concept which makes use of a MEMS IMU and ADM, named the General Aviation GPS Integrity System (GAGIS) for convenience. GAGIS includes a GPS, MEMS IMU, ADM, a bank of Extended Kalman Filters (EKF) and uses the Normalized Solution Separation (NSS) method for fault detection. The GPS, IMU and ADM information is fused together in a tightly-coupled configuration, with frequent GPS updates applied to correct the IMU and ADM. The use of both IMU and ADM allows for a number of different possible configurations. Three are investigated in this thesis; a GPS-IMU EKF, a GPS-ADM EKF and a GPS-IMU-ADM EKF. The integrity monitoring performance of the GPS-IMU EKF, GPS-ADM EKF and GPS-IMU-ADM EKF architectures are compared against each other and against a stand-alone GPS architecture in a series of computer simulation tests of an APV approach. Typical GPS, IMU, ADM and environmental errors are simulated. The simulation results show the GPS integrity monitoring performance achievable by augmenting GPS with an ADM and low-cost IMU for a general aviation aircraft on an APV approach. A contribution to research is made in determining whether a low-cost IMU or ADM can provide improved integrity monitoring performance over stand-alone GPS. It is found that a reduction of approximately 50% in protection levels is possible using the GPS-IMU EKF or GPS-ADM EKF as well as faster detection of a slowly growing ramp fault on a GPS pseudorange measurement. A second contribution is made in determining how augmenting GPS with an ADM compares to using a low-cost IMU. By comparing the results for the GPS-ADM EKF against the GPS-IMU EKF it is found that protection levels for the GPS-ADM EKF were only approximately 2% higher. This indicates that the GPS-ADM EKF may potentially replace the GPS-IMU EKF for integrity monitoring should the IMU ever fail. In this way the ADM may contribute to the navigation system robustness and redundancy. To investigate this further, a third contribution is made in determining whether or not the ADM can function as an IMU replacement to improve navigation system redundancy by investigating the case of three IMU accelerometers failing. It is found that the failed IMU measurements may be supplemented by the ADM and adequate integrity monitoring performance achieved. Besides treating the IMU and ADM separately as in the GPS-IMU EKF and GPS-ADM EKF, a fourth contribution is made in investigating the possibility of fusing the IMU and ADM information together to achieve greater performance than either alone. This is investigated using the GPS-IMU-ADM EKF. It is found that the GPS-IMU-ADM EKF can achieve protection levels approximately 3% lower in the horizontal and 6% lower in the vertical than a GPS-IMU EKF. However this small improvement may not justify the complexity of fusing the IMU with an ADM in practical systems. Affordable ABAS in general aviation may enhance existing GPS-only fault detection solutions or help overcome any outages in augmentation systems such as the Ground-based Regional Augmentation System (GRAS). Countries such as Australia which currently do not have an augmentation solution for general aviation could especially benefit from the economic savings and safety benefits of satellite navigation-based APV approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aligning the motivation of contractors and consultants to perform better than ‘business-as-usual’ (BAU) on a construction project is a complex undertaking and the costs of failure are high as misalignment can compromise project outcomes. Despite the potential benefits of effective alignment, there is still little information about optimally designing procurement approaches that promote motivation towards ‘above BAU’ goals. The paper contributes to this knowledge gap by examining the negative drivers of motivation in a major construction project that, despite a wide range of performance enhancing incentives, failed to exceed BAU performance. The paper provides a case study of an iconic infrastructure project undertaken in Australia between 2002 and 2004. It is shown that incentives provided to contractors and consultants to achieve above BAU performance can be compromised by a range of negative motivation drivers including: • inequitable contractual risk allocation; • late involvement of key stakeholders; • inconsistency between contract intentions and relationship intentions; • inadequate price negotiation; • inconsistency between the project performance goals and incentive goals; •unfair and inflexible incentive performance measurement processes. Future quantitative research is planned to determine the generalisability of these results.