901 resultados para Vertical Migration
Resumo:
Light is generally regarded as the most likely cue used by zooplankton to regulate their vertical movements through the water column. However, the way in which light is used by zooplankton as a cue is not well understood. In this paper we present a mathematical model of diel vertical migration which produces vertical distributions of zooplankton that vary in space and time. The model is used to predict the patterns of vertical distribution which result when animals are assumed to adopt one of three commonly proposed mechanisms for vertical swimming. First, we assume zooplankton tend to swim towards a preferred intensity of light. We then assume zooplankton swim in response to either the rate of change in light intensity or the relative rate of change in light intensity. The model predicts that for all three mechanisms movement is fastest at sunset and sunrise and populations are primarily influenced by eddy diffusion at night in the absence of a light stimulus. Daytime patterns of vertical distribution differ between the three mechanisms and the reasons for the predicted differences are discussed. Swimming responses to properties of the light field are shown to be adequate for describing diel vertical migration where animals congregate in near surface waters during the evening and reside at deeper depths during the day. However, the model is unable to explain how some populations halt their ascent before reaching surface waters or how populations re-congregate in surface waters a few hours before sunrise, a phenomenon which is sometimes observed in the held. The model results indicate that other exogenous or endogenous factors besides light may play important roles in regulating vertical movement.
Resumo:
ABSTRACT Based on the hypothesis that diel vertical migration (DVM) is a mechanism of predator avoidance, the objective of the present study was to test for the occurrence of DVM in planktivorous fish larvae of Hypophthalmus edentatus (Spix, 1829) (Siluriformes, Pimelodidae) and Plagioscion squamosissimus (Heckel, 1840) (Perciformes, Sciaenidae), and zooplankton (rotifers, cladocerans and copepods) in an isolated tropical lagoon in the floodplain of the Upper Paraná River, Brazil (region of Parque Nacional de Ilha Grande). We investigated spatial overlap between predators (planktivorous fish larvae) and prey (zooplankton), and tested which physical and chemical variables of the water are related to the DVM of the studied communities. We performed nocturnal (8:00 pm and 4:00 am) and diurnal sampling (8:00 am and 4:00 pm) in the limnetic region of the lagoon for six consecutive months, from October 2010 to March 2011, which comprises the reproductive period of the fish species analyzed. During the day the larvae tried to remain aggregated in the bottom of the lagoon, whereas at night they tried to disperse in the water column. Especially for cladocerans, the diel vertical migration is an important behavior to avoid predation larvae of H. edentatus and P. squamosissimus once decreased spatial overlap between secured and its potential predators, which corroborates the hypothesis that DVM is a mechanism of predator avoidance. Although significant correlations were observed between the abiotic factors and WMD of microcrustaceans at certain times of day, the effect of predation of fish larvae on zooplankton showed more important in this environment, because the small depth and isolation not allow great variation of abiotic factors seasonally and between strata the lagoon.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present study aimed at evaluating the vertical migration of Haemonchus contortus third stage larvae (1-3) on Brachiaria decumbens grass, as well as at verifying whether larval numbers on pasture varies over the day due to climatic conditions. Feces containing H. contortus L3 were deposited on the soil in the middle of herbage which was initially 30 cm high. Seven days later, samples of different herbage strata (0-10, 10-20 and >20 cm), remaining feces and a layer of approximately 1 cm soil were collected. Tests were carried out in four periods: September 2006, December 2006, March 2007, and June 2007. Samples were collected at sunrise, mid-day, sunset, and mid-night. The humidity and temperature conditions observed in different months influenced larval migration from the feces to the grass. In September, December and March, it rained after fecal deposition on pasture, which favored migration of larvae from the feces to the herbage. Conversely, in June 2007, when there was no rainfall after fecal deposition and temperatures were lower, L3 were mainly recovered from feces. As regards the vertical migration of larvae, the numbers of H. contortus L3 in the forage strata remained relatively constant over the day. This indicates there is not a determined period in which sheep on pasture are at higher risk of infection. Finally, in all collection periods a considerable amount of third stage larvae was observed on the herbage top, which is the first plant part consumed by sheep. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
For meroplanktonic larvae that must settle in coastal areas, their successful return to the shore is determined largely by physical transport processes; however, many organisms perform vertical movements to aid successful recruitment. In this study, daytime tidal vertical migration of megalopae of the velvet swimming crab Necora puber was investigated across two different exposures in the shallow waters of Plymouth Sound. Crabs were collected using a plankton net at the surface and near the bottom during flood and ebb tides. Distribution of the pelagic postlarvae was patchy and the abundance varied spatially in tens and thousands of metres. In temporal scales, the annual pattern was dominated by low occurrence of megalopae, punctuated by episodic peaks of high abundance. Most megalopae were collected at the surface irrespective of the tidal phase. The effect of wave exposure on the vertical migration of megalopae was not clear, although there was a general higher abundance of megalopae on exposed shores. Daytime abundance in the water column appears to be regulated by the tidal cycle, as megalopae were more abundant during flood than ebb tides. Although the megalopae do not appear to make large vertical migrations, this behaviour should produce a net shoreward transport. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
The literature on niche separation and coexistence between species is large, but there is widespread variation in behavioural strategy between individuals of the same species that has received much less attention. Understanding what maintains this diversity is important because intraspecific behavioural diversity can affect population dynamics and community interactions. Multiple behavioural strategies can arise either as phenotype-dependent ‘conditional strategies’, where phenotypic variation causes individuals to adopt different strategies for optimizing fitness, or as internally-independent ‘alternative strategies’, where multiple fitness peaks exist for individuals and strategic ‘choice’ remains plastic. Though intraspecific variation in stable phenotypes is known to maintain intraspecific behavioural diversity through conditional strategies, when internal conditions are highly plastic or reversible, it is not clear whether individual behaviours are maintained as conditional strategies, or as alternative strategies of equal fitness. In this study, I combine an observational and experimental approach to identify the likely mechanisms maintaining behavioural diversity between hemoglobin-rich and hemoglobin-poor morphs in a natural population of Daphnia pulicaria. In Round Lake, individuals with low hemoglobin migrate daily from the hypolimnion to the epilimnion, whereas individuals with high hemoglobin remain in the hypolimnion. Using high-resolution depth and time sampling, I discovered behavioural diversity both within and among hemoglobin phenotypes. I tested the role of hemoglobin phenotype in maintaining behavioural diversity using automated migration robots that move individuals across the natural environmental gradients in the lake. By measuring the fitness of each morph undergoing either a natural migration behaviour, or the migration of the opposite morph, I found that the fitness of hemoglobin rich and poor morphs in their natural behaviour does not differ, but that Hb-rich individuals can obtain equal fitness from either behaviour, while Hb-poor morphs suffer substantial drops in survivorship in the alternate migration behaviour. Thus, migration behaviour in this system exists as a conditional strategy for some individuals, and as alternative strategies of equal fitness for others. The results of this study suggest that individual limits in the expression of highly flexible internal conditions can reinforce intraspecific behavioural diversity. Few studies have measured the fitness consequences of switching migration strategies and this study provides a rare example in the field.
Resumo:
The literature on niche separation and coexistence between species is large, but there is widespread variation in behavioural strategy between individuals of the same species that has received much less attention. Understanding what maintains this diversity is important because intraspecific behavioural diversity can affect population dynamics and community interactions. Multiple behavioural strategies can arise either as phenotype-dependent ‘conditional strategies’, where phenotypic variation causes individuals to adopt different strategies for optimizing fitness, or as internally-independent ‘alternative strategies’, where multiple fitness peaks exist for individuals and strategic ‘choice’ remains plastic. Though intraspecific variation in stable phenotypes is known to maintain intraspecific behavioural diversity through conditional strategies, when internal conditions are highly plastic or reversible, it is not clear whether individual behaviours are maintained as conditional strategies, or as alternative strategies of equal fitness. In this study, I combine an observational and experimental approach to identify the likely mechanisms maintaining behavioural diversity between hemoglobin-rich and hemoglobin-poor morphs in a natural population of Daphnia pulicaria. In Round Lake, individuals with low hemoglobin migrate daily from the hypolimnion to the epilimnion, whereas individuals with high hemoglobin remain in the hypolimnion. Using high-resolution depth and time sampling, I discovered behavioural diversity both within and among hemoglobin phenotypes. I tested the role of hemoglobin phenotype in maintaining behavioural diversity using automated migration robots that move individuals across the natural environmental gradients in the lake. By measuring the fitness of each morph undergoing either a natural migration behaviour, or the migration of the opposite morph, I found that the fitness of hemoglobin rich and poor morphs in their natural behaviour does not differ, but that Hb-rich individuals can obtain equal fitness from either behaviour, while Hb-poor morphs suffer substantial drops in survivorship in the alternate migration behaviour. Thus, migration behaviour in this system exists as a conditional strategy for some individuals, and as alternative strategies of equal fitness for others. The results of this study suggest that individual limits in the expression of highly flexible internal conditions can reinforce intraspecific behavioural diversity. Few studies have measured the fitness consequences of switching migration strategies and this study provides a rare example in the field.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Abundance and composition of marine benthic communities have been relatively well studied in the SE Brazilian coast, but little is known on patterns controlling the distribution of their planktonic larval stages. A survey of larval abundance in the continental margin, using a Multi-Plankton Sampler, was conducted in a cross-shelf transect off Cabo Frio (23 degrees S and 42 degrees W) during a costal upwelling event. Hydrographic conditions were monitored through discrete CDT casts. Chlorophyll-a in the top 100 m of the water column was determined and changes in surface chlorophyll-a was estimated using SeaWiFS images. Based on the larval abundances and the meso-scale hydrodynamics scenario, our results suggest two different processes affecting larval distributions. High larval densities were found nearshore due to the upwelling event associated with high chlorophyll a and strong along shore current. On the continental slope, high larval abundance was associated with a clockwise rotating meander, which may have entrapped larvae from a region located further north (Cabo de Sao Tome, 22 degrees S and 41 degrees W). In mid-shelf areas, our data suggests that vertical migration may likely occur as a response to avoid offshore transport by upwelling plumes and/or cyclonic meanders. The hydrodynamic scenario observed in the study area has two distinct yet extremely important consequences: larval retention on food-rich upwelling areas and the broadening of the tropical domain to southernmost subtropical areas. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
[EN] Diel Vertical Migrants (DVMs) are mainly zooplankton and micronekton which migrate upward from 400-500 m depth every night to feed on the productive epipelagic zone, coming back at dawn to the mesopelagic zone, where they defecate, excrete, and respire the ingested carbon. DVMs should contribute to the biological pump in the ocean and, accordingly, to the global CO2 balance. Although those migrants are mainly small fishes, cephalopods and crustaceans, the lanternfishes (myctophidae) usually contribute up to 80% of total DVMs biomass. Thus, myctophids may represent a pathway accounting for a substantial export of organic carbon to the deep ocean. However, the magnitude of this transport is still poorly known. In order to assess this active flux of carbon, we performed a preliminary study of mesopelagic organisms around the Canary Islands. Here we present the results of diet, daily rations and feeding chronology of Lobianchia dofleini, Hygophum hygomii and Ceratoscopelus maderensis, 3 dominant species of myctophids performing diel vertical migrations in the Subtropical Eastern North Atlantic Ocean. Samples were obtained on board the RV La Bocaina during June 2009. Myctophids were sorted and fixed in 4% buffered formalin and the stomach contents of target species were examined and weighted. Feeding chronology was approached by studying stomach fullness and state of digestion of prey items in individuals from hauls performed at different times and depths. Our results provide further information about lanternfishes feeding ecology in relation to their vertical migration patterns as well as their contribution to the biological carbon pump.
Resumo:
Day/night variations in the size distribution of the particulate matter >0.15 mm (PM) were studied in May 1995 during the DYNAPROC time-series cruise in the northwestern Mediterranean Sea. Data on vertical distributions of PM (>0.15 mm) and zooplankton were collected with the Underwater Video Profiler (UVP). The comparisons of the UVP data with plankton net data and POC data from water bottles indicated that more than 97% of the particles detected by the UVP were non-living particles (0.15 mm) and that the PM contributed 4-34% of the total dry weight measured on GF/F filters. Comparison of seven pairs of day and night vertical profiles performed during the cruise showed that in the upper 800 m, the mean size and the volume of particles was higher at night than during the day. During the night, the integrated volume of the PM increased on average by 32±20%. This increase corresponded to a shift of smaller size classes (<0.5 mm) towards the larger ones (>0.5 mm). During the day, the pattern was reversed, and the quantity of PM >0.5 mm decreased. During the study period, the standing stock of PM (60-800 m) decreased from 7.5 to less than 2 g m?2 but the diel variations persisted, except for two short periods in the superficial layer following a wind event. The cyclic feeding activity induced by the diel vertical migration of zooplankton could be the best candidate to explain the observed diel fluctuations in the size classes of PM in the water column. However, our results also suggest that in the upper layer additional driving forces such as the increase of the level of turbulence after a wind event or the modification of the zoo- and phytoplankton community can influence the PM temporal evolution.
Resumo:
The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300-600 m depth. Here, oxygen concentrations rarely fall below 40 µmol O2 kg-1, but are expected to decline under future projections of global warming. The recent discovery of mesoscale eddies that harbour a shallow suboxic (<5 µmol O2 kg-1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by on-going ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. At nighttime, when a large proportion of acoustic scatterers is ascending into the upper 150 m, a drastic reduction in mean volume backscattering (Sv, shipboard ADCP, 75kHz) within the shallow OMZ of the eddy was evident compared to the nighttime distribution outside the eddy. Acoustic scatterers were avoiding the depth range between about 85 to 120 m, where oxygen concentrations were lower than approximately 20 µmol O2 kg-1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time-series observations of a moored ADCP (upward looking, 300kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies have been identified to be followed by zooplankton in response to the eddy OMZ: i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids), ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods), iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes), and iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy i), ii) and iv), compression of the habitable volume in the surface may increase prey-predator encounter rates, rendering zooplankton and micronekton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 µmol O2 kg-1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton and micronekton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.
Resumo:
Abundance and composition of marine benthic communities have been relatively well studied in the SE Brazilian coast, but little is known on patterns controlling the distribution of their planktonic larval stages. A survey of larval abundance in the continental margin, using a Multi-Plankton Sampler, was conducted in a cross-shelf transect off Cabo Frio (23 degrees S and 42 degrees W) during a costal upwelling event. Hydrographic conditions were monitored through discrete CDT casts. Chlorophyll-a in the top 100 m of the water column was determined and changes in surface chlorophyll-a was estimated using SeaWiFS images. Based on the larval abundances and the meso-scale hydrodynamics scenario, our results suggest two different processes affecting larval distributions. High larval densities were found nearshore due to the upwelling event associated with high chlorophyll a and strong along shore current. on the continental slope, high larval abundance was associated with a clockwise rotating meander, which may have entrapped larvae from a region located further north (Cabo de Sao Tome, 22 degrees S and 41 degrees W). In mid-shelf areas, our data suggests that vertical migration may likely occur as a response to avoid offshore transport by upwelling plumes and/or cyclonic meanders. The hydrodynamic scenario observed in the study area has two distinct yet extremely important consequences: larval retention on food-rich upwelling areas and the broadening of the tropical domain to southernmost subtropical areas. (C) 2009 Elsevier B.V. All rights reserved.