974 resultados para Ventilação natural urbana
Resumo:
Natural ventilation is an efficient bioclimatic strategy, one that provides thermal comfort, healthful and cooling to the edification. However, the disregard for quality environment, the uncertainties involved in the phenomenon and the popularization of artificial climate systems are held as an excuse for those who neglect the benefits of passive cooling. The unfamiliarity with the concept may be lessened if ventilation is observed in every step of the project, especially in the initial phase in which decisions bear a great impact in the construction process. The tools available in order to quantify the impact of projected decisions consist basically of the renovation rate calculations or computer simulations of fluids, commonly dubbed CFD, which stands for Computational Fluid Dynamics , both somewhat apart from the project s execution and unable to adapt for use in parametric studies. Thus, we chose to verify, through computer simulation, the representativeness of the results with a method of simplified air reconditioning rate calculation, as well as making it more compatible with the questions relevant to the first phases of the project s process. The case object consists of a model resulting from the recommendations of the Código de Obras de Natal/ RN, customized according to the NBR 15220. The study has shown the complexity in aggregating a CFD tool to the process and the need for a method capable of generating data at the compatible rate to the flow of ideas and are discarded during the project s development. At the end of our study, we discuss the necessary concessions for the realization of simulations, the applicability and the limitations of both the tools used and the method adopted, as well as the representativeness of the results obtained
Resumo:
The building envelope is the principal mean of interaction between indoors and environment, with direct influence on thermal and energy performance of the building. By intervening in the envelope, with the proposal of specific architectural elements, it is possible to promote the use of passive strategies of conditioning, such as natural ventilation. The cross ventilation is recommended by the NBR 15220-3 as the bioclimatic main strategy for the hot and humid climate of Natal/RN, offering among other benefits, the thermal comfort of occupants. The analysis tools of natural ventilation, on the other hand, cover a variety of techniques, from the simplified calculation methods to computer fluid dynamics, whose limitations are discussed in several papers, but without detailing the problems encountered. In this sense, the present study aims to evaluate the potential of wind catchers, envelope elements used to increase natural ventilation in the building, through CFD simplified simulation. Moreover, it seeks to quantify the limitations encountered during the analysis. For this, the procedure adopted to evaluate the elements implementation and efficiency was the CFD simulation, abbreviation for Computer Fluid Dynamics, with the software DesignBuilder CFD. It was defined a base case, where wind catchers were added with various settings, to compare them with each other and appreciate the differences in flows and air speeds encountered. Initially there has been done sensitivity tests for familiarization with the software and observe simulation patterns, mapping the settings used and simulation time for each case simulated. The results show the limitations encountered during the simulation process, as well as an overview of the efficiency and potential of wind catchers, with the increase of ventilation with the use of catchers, differences in air flow patterns and significant increase in air speeds indoors, besides changes found due to different element geometries. It is considered that the software used can help designers during preliminary analysis in the early stages of design
Resumo:
Natural ventilation is an efficient bioclimatic strategy, one that provides thermal comfort, healthful and cooling to the edification. However, the disregard for quality environment, the uncertainties involved in the phenomenon and the popularization of artificial climate systems are held as an excuse for those who neglect the benefits of passive cooling. The unfamiliarity with the concept may be lessened if ventilation is observed in every step of the project, especially in the initial phase in which decisions bear a great impact in the construction process. The tools available in order to quantify the impact of projected decisions consist basically of the renovation rate calculations or computer simulations of fluids, commonly dubbed CFD, which stands for Computational Fluid Dynamics , both somewhat apart from the project s execution and unable to adapt for use in parametric studies. Thus, we chose to verify, through computer simulation, the representativeness of the results with a method of simplified air reconditioning rate calculation, as well as making it more compatible with the questions relevant to the first phases of the project s process. The case object consists of a model resulting from the recommendations of the Código de Obras de Natal/ RN, customized according to the NBR 15220. The study has shown the complexity in aggregating a CFD tool to the process and the need for a method capable of generating data at the compatible rate to the flow of ideas and are discarded during the project s development. At the end of our study, we discuss the necessary concessions for the realization of simulations, the applicability and the limitations of both the tools used and the method adopted, as well as the representativeness of the results obtained
Resumo:
The building envelope is the principal mean of interaction between indoors and environment, with direct influence on thermal and energy performance of the building. By intervening in the envelope, with the proposal of specific architectural elements, it is possible to promote the use of passive strategies of conditioning, such as natural ventilation. The cross ventilation is recommended by the NBR 15220-3 as the bioclimatic main strategy for the hot and humid climate of Natal/RN, offering among other benefits, the thermal comfort of occupants. The analysis tools of natural ventilation, on the other hand, cover a variety of techniques, from the simplified calculation methods to computer fluid dynamics, whose limitations are discussed in several papers, but without detailing the problems encountered. In this sense, the present study aims to evaluate the potential of wind catchers, envelope elements used to increase natural ventilation in the building, through CFD simplified simulation. Moreover, it seeks to quantify the limitations encountered during the analysis. For this, the procedure adopted to evaluate the elements implementation and efficiency was the CFD simulation, abbreviation for Computer Fluid Dynamics, with the software DesignBuilder CFD. It was defined a base case, where wind catchers were added with various settings, to compare them with each other and appreciate the differences in flows and air speeds encountered. Initially there has been done sensitivity tests for familiarization with the software and observe simulation patterns, mapping the settings used and simulation time for each case simulated. The results show the limitations encountered during the simulation process, as well as an overview of the efficiency and potential of wind catchers, with the increase of ventilation with the use of catchers, differences in air flow patterns and significant increase in air speeds indoors, besides changes found due to different element geometries. It is considered that the software used can help designers during preliminary analysis in the early stages of design
Resumo:
Natural ventilation is an efficient bioclimatic strategy, one that provides thermal comfort, healthful and cooling to the edification. However, the disregard for quality environment, the uncertainties involved in the phenomenon and the popularization of artificial climate systems are held as an excuse for those who neglect the benefits of passive cooling. The unfamiliarity with the concept may be lessened if ventilation is observed in every step of the project, especially in the initial phase in which decisions bear a great impact in the construction process. The tools available in order to quantify the impact of projected decisions consist basically of the renovation rate calculations or computer simulations of fluids, commonly dubbed CFD, which stands for Computational Fluid Dynamics , both somewhat apart from the project s execution and unable to adapt for use in parametric studies. Thus, we chose to verify, through computer simulation, the representativeness of the results with a method of simplified air reconditioning rate calculation, as well as making it more compatible with the questions relevant to the first phases of the project s process. The case object consists of a model resulting from the recommendations of the Código de Obras de Natal/ RN, customized according to the NBR 15220. The study has shown the complexity in aggregating a CFD tool to the process and the need for a method capable of generating data at the compatible rate to the flow of ideas and are discarded during the project s development. At the end of our study, we discuss the necessary concessions for the realization of simulations, the applicability and the limitations of both the tools used and the method adopted, as well as the representativeness of the results obtained
Resumo:
The building envelope is the principal mean of interaction between indoors and environment, with direct influence on thermal and energy performance of the building. By intervening in the envelope, with the proposal of specific architectural elements, it is possible to promote the use of passive strategies of conditioning, such as natural ventilation. The cross ventilation is recommended by the NBR 15220-3 as the bioclimatic main strategy for the hot and humid climate of Natal/RN, offering among other benefits, the thermal comfort of occupants. The analysis tools of natural ventilation, on the other hand, cover a variety of techniques, from the simplified calculation methods to computer fluid dynamics, whose limitations are discussed in several papers, but without detailing the problems encountered. In this sense, the present study aims to evaluate the potential of wind catchers, envelope elements used to increase natural ventilation in the building, through CFD simplified simulation. Moreover, it seeks to quantify the limitations encountered during the analysis. For this, the procedure adopted to evaluate the elements implementation and efficiency was the CFD simulation, abbreviation for Computer Fluid Dynamics, with the software DesignBuilder CFD. It was defined a base case, where wind catchers were added with various settings, to compare them with each other and appreciate the differences in flows and air speeds encountered. Initially there has been done sensitivity tests for familiarization with the software and observe simulation patterns, mapping the settings used and simulation time for each case simulated. The results show the limitations encountered during the simulation process, as well as an overview of the efficiency and potential of wind catchers, with the increase of ventilation with the use of catchers, differences in air flow patterns and significant increase in air speeds indoors, besides changes found due to different element geometries. It is considered that the software used can help designers during preliminary analysis in the early stages of design
Resumo:
Pretende-se que este trabalho seja uma contribuição para o reconhecimento da importância da promoção da ventilação em edifícios de habitação, esta que é imprescindível para que haja um ambiente saudável e confortável no espaço interior. Pretende-se também que seja dado a conhecer alguns tipos de sistemas de ventilação que recorrem a processos naturais para o seu funcionamento, garantindo assim a sustentabilidade dos edifícios a nível energético. Nesta dissertação é inicialmente abordada a temática do conforto térmico, com o objectivo de compreender a adaptação e resposta de um indivíduo face às condições térmicas no interior de um edifício de habitação. Seguidamente foram estudados os factores que mais influenciam o processo de Ventilação Natural, ou seja, a acção do vento e a acção térmica (o sol). O passo seguinte foi o estudo do dimensionamento e concepção de sistemas de Ventilação Natural mais usuais (tais como aberturas exteriores, aberturas interiores e chaminés), e o estudo de vários exemplos de sistemas solar passivos e estratégias arquitectónicas que podem ser utilizados. Seguidamente foi estudada a modelação matemática dos processos de Ventilação Natural. Foram ainda estudados dois edifícios construídos na região autónoma da Madeira, mais concretamente na ilha de Porto Santo, estes que foram concebidos para se adaptarem ao clima da região através de algumas estratégias arquitectónicas e através de sistemas solar passivos. Finalmente foi elaborado um pequeno projecto para uma moradia a ser construída na ilha da Madeira. Para esta foram adoptadas algumas estratégias tendo em vista uma adaptação ao clima durante todo o ano, nomeadamente estratégias arquitectónicas e sistemas solar passivos para a promoção da Ventilação Natural.
Resumo:
This work analyses a study on natural ventilation and its relation to the urban legislation versus the building types in an urban fraction of coastal area of Praia do Meio in the city of Natal/RN, approaching the type or types of land use most appropriate to this limited urban fraction. The objective of this study is to analyse the effects of the present legislation as well as the types of buildings in this area on the natural ventilation. This urban fraction was selected because it is one of the sites from where the wind flows into the city of Natal. This research is based on the hypothesis stating that the reduction on the porosity of the urban soil (decrease in the set back/boundary clearance), and an increase in the form (height of the buildings) rise the level of the ventilation gradient, consequently causing a reduction on the wind speed at the lowest part of the buildings. Three-dimensional computational models were used to produce the modes of occupation allowed in the urban fraction within the area under study. A Computational Fluid Dynamics (CFD) software was also used to analyse the modes of land occupation. Following simulation, a statistical assessment was carried out for validation of the hypothesis. It was concluded that the reduction in the soil porosity as a consequence of the rates that defined the minimum boundary clearance between the building and the boundary of the plot (and consequently the set back), as well as the increase in the building form (height of the buildings) caused a reduction in the wind speed, thus creating heat islands
Resumo:
This work analyses a study on natural ventilation and its relation to the urban legislation versus the building types in an urban fraction of coastal area of Praia do Meio in the city of Natal/RN, approaching the type or types of land use most appropriate to this limited urban fraction. The objective of this study is to analyse the effects of the present legislation as well as the types of buildings in this area on the natural ventilation. This urban fraction was selected because it is one of the sites from where the wind flows into the city of Natal. This research is based on the hypothesis stating that the reduction on the porosity of the urban soil (decrease in the set back/boundary clearance), and an increase in the form (height of the buildings) rise the level of the ventilation gradient, consequently causing a reduction on the wind speed at the lowest part of the buildings. Three-dimensional computational models were used to produce the modes of occupation allowed in the urban fraction within the area under study. A Computational Fluid Dynamics (CFD) software was also used to analyse the modes of land occupation. Following simulation, a statistical assessment was carried out for validation of the hypothesis. It was concluded that the reduction in the soil porosity as a consequence of the rates that defined the minimum boundary clearance between the building and the boundary of the plot (and consequently the set back), as well as the increase in the building form (height of the buildings) caused a reduction in the wind speed, thus creating heat islands
Resumo:
A qualidade do ar interior (QAI) em edifícios é uma preocupação que acompanha o Homem desde há séculos. A qualidade do ar interior nas escolas, em particular, tem vindo a provocar um crescente interesse, dado que o grupo populacional pertence a um grupo etário mais suscetível de ser afetado. A utilização de ferramentas numéricas de modelação na avaliação da QAI é uma mais valia, pois permite estimar as concentrações dos poluentes no interior dos edifícios. O principal objetivo deste estudo consiste na avaliação da qualidade do ar interior através da aplicação de uma ferramenta a um caso de estudo. Neste caso de estudo estimou-se a concentração de material particulado (PM10) numa sala de aula da Escola Básica nº 1 da Glória, em Aveiro. Neste âmbito, foi aplicado o modelo INDEX, Indoor Exposure model, que possibilita o cálculo de concentrações interiores de poluentes atmosféricos. Os resultados da aplicação indicam que as concentrações do ar interior são influenciadas pelas concentrações exteriores e pela velocidade do vento. Note-se, contudo, que os valores simulados cumprem os valores legislados na Portaria nº 353-A/2013, de 4 de Dezembro. Embora os resultados simulados não revelem uma má qualidade do ar interior na sala de aula da Escola Básica nº 1 da Glória, a avaliação de outros poluentes seria um ponto de extrema importância, de forma a verificar se os requisitos da qualidade do ar interior estarão a ser garantidos.
Resumo:
This work analyses a study on natural ventilation and its relation to the urban legislation versus the building types in an urban fraction of coastal area of Praia do Meio in the city of Natal/RN, approaching the type or types of land use most appropriate to this limited urban fraction. The objective of this study is to analyse the effects of the present legislation as well as the types of buildings in this area on the natural ventilation. This urban fraction was selected because it is one of the sites from where the wind flows into the city of Natal. This research is based on the hypothesis stating that the reduction on the porosity of the urban soil (decrease in the set back/boundary clearance), and an increase in the form (height of the buildings) rise the level of the ventilation gradient, consequently causing a reduction on the wind speed at the lowest part of the buildings. Three-dimensional computational models were used to produce the modes of occupation allowed in the urban fraction within the area under study. A Computational Fluid Dynamics (CFD) software was also used to analyse the modes of land occupation. Following simulation, a statistical assessment was carried out for validation of the hypothesis. It was concluded that the reduction in the soil porosity as a consequence of the rates that defined the minimum boundary clearance between the building and the boundary of the plot (and consequently the set back), as well as the increase in the building form (height of the buildings) caused a reduction in the wind speed, thus creating heat islands
Resumo:
The present work studies the natural ventilation and its relationship with the urban standards, which establishes the form of occupation and use of the land in our cities. The method simulates the application of the urban standards of the City Master Plan over the last three years. The simulation takes place in the District of Petrópolis, in the city of Natal , Brazil and analyses the effects of the standards of natural ventilation. The formulated hypothesis states that the reductions in the urban spaces between buildings rises up the vertical profile of ventilation, reducing, therefore, the velocity of the wind at the lower levels of the buildings. To develop the study, occupation models were built, using computerized, three-dimensional models. These occupation models were analyzed using the CFD (Computational Fluid Dynamics) code. The conclusion is that the more we reduce the urban space between buildings, the more we reduce the wind speed in constructed areas, increasing, therefore, the possibility to generate heat islands
Resumo:
The present work studies the natural ventilation and its relationship with the urban standards, which establishes the form of occupation and use of the land in our cities. The method simulates the application of the urban standards of the City Master Plan over the last three years. The simulation takes place in the District of Petrópolis, in the city of Natal , Brazil and analyses the effects of the standards of natural ventilation. The formulated hypothesis states that the reductions in the urban spaces between buildings rises up the vertical profile of ventilation, reducing, therefore, the velocity of the wind at the lower levels of the buildings. To develop the study, occupation models were built, using computerized, three-dimensional models. These occupation models were analyzed using the CFD (Computational Fluid Dynamics) code. The conclusion is that the more we reduce the urban space between buildings, the more we reduce the wind speed in constructed areas, increasing, therefore, the possibility to generate heat islands
Resumo:
The present work studies the natural ventilation and its relationship with the urban standards, which establishes the form of occupation and use of the land in our cities. The method simulates the application of the urban standards of the City Master Plan over the last three years. The simulation takes place in the District of Petrópolis, in the city of Natal , Brazil and analyses the effects of the standards of natural ventilation. The formulated hypothesis states that the reductions in the urban spaces between buildings rises up the vertical profile of ventilation, reducing, therefore, the velocity of the wind at the lower levels of the buildings. To develop the study, occupation models were built, using computerized, three-dimensional models. These occupation models were analyzed using the CFD (Computational Fluid Dynamics) code. The conclusion is that the more we reduce the urban space between buildings, the more we reduce the wind speed in constructed areas, increasing, therefore, the possibility to generate heat islands