998 resultados para Vehicle components.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last two years, Governor Blagojevich and the Illinois General Assembly have enacted a number of laws to reduce the health risks associated with the use and disposal of consumer, household and commercial products that contain mercury. These products include thermometers, switches, electrical relays and scientific instruments used in schools. The purpose of these laws is to reduce mercury releases into the environment. Mercury is a strong neurotoxin that can be harmful to the health of humans and wildlife. Mercury exposure poses a particular risk to young children and pregnant women because mercury may inhibit the development of the brain and nervous system. This report presents recommendations for improving efforts to reduce and recycle mercury components that are found in thermostats and motor vehicles. Illinois EPA prepared the report in response to Public Act 93-0964. In drafting the report, Illinois EPA conducted research on mercury reduction and recycling programs in other states, reviewed technical studies and consulted with officials in the private and public sectors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transportation Systems Center, Cambridge, Mass.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

National Highway Safety Bureau, Washington, D.C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

National Highway Safety Bureau, Washington, D.C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Sate Vehicle Programs, Washington D. C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transition zones between bridge decks and rail tracks suffer early failure due to poor interaction between rail vehicles and sudden changes of stiffness. This has been an ongoing problem to rail industry and yet still no systematic studies appear to have been taken to maintain a gradually smoothening transmission of forces between the bridge and its approach. Differential settlement between the bridge deck and rail track in the transition zone is the fundamental issue, which negatively impacts the rail industry by causing passenger discomfort, early damage to infrastructure and vehicle components, speed reduction, and frequent maintenance cycles. Identification of mechanism of the track degradation and factors affecting is imperative to design any mitigation method for reducing track degradation rate at the bridge transition zone. Unfortunately this issue is still not well understood, after conducting a numbers of reviews to evaluate the key causes, and introducing a wide range of mitigation techniques. In this study, a comprehensive analysis of the available literature has been carried out to develop either a novel design framework or a mitigation technique for the bridge transition zone. This paper addresses three critical questions in relation to the track degradation at transition zone: (1) what are the causes of bridge transition track degradation?; (2) what are the available mitigation techniques in reducing the track degradation rate?; (3) what are the factors affecting on poor performance of the existing mitigation techniques?. It is found that the absence of soil-water response, dynamic loading response, and behaviour of geotechnical characteristics under long-term conditions in existing track transition design frameworks critically influence on the failures of existing mitigation techniques. This paper also evaluates some of the existing design frameworks to identify how each design framework addresses the track degradation at the bridge transition zone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the authors present a crashworthiness assessment and suggestions for modification of a conventionally designed rail vehicle with a driving cab (cab car). The analytical approach, based on numerical analysis, consisted of two stages. Firstly, the crashworthiness of the cab car was assessed by simulating a collision between the cab car and a rigid wall. Then, after analysing structural weaknesses, the design of the cab car was modified and simulated again in the same scenario. It was found that downward bending is an intrinsic weakness in conventional rail vehicles and that jackknifing is a main form of failures in conventional rail vehicle components. The cab car, as modified by the authors, overcomes the original weaknesses and shows the desired progressive collapse behaviour in simulation. The conclusions have general relevance for other studies but more importantly, point to the need for a rethink of some aspects of rail vehicle design.