995 resultados para Vehicle classification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an integrated system for vehicle classification. This system aims to classify vehicles using different approaches: 1) based on the height of the first axle and_the number of axles; 2) based on volumetric measurements and; 3) based on features extracted from the captured image of the vehicle. The system uses a laser sensor for measurements and a set of image analysis algorithms to compute some visual features. By combining different classification methods, it is shown that the system improves its accuracy and robustness, enabling its usage in more difficult environments satisfying the proposed requirements established by the Portuguese motorway contractor BRISA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Video-based vehicle detection is the focus of increasing interest due to its potential towards collision avoidance. In particular, vehicle verification is especially challenging due to the enormous variability of vehicles in size, color, pose, etc. In this paper, a new approach based on supervised learning using Principal Component Analysis (PCA) is proposed that addresses the main limitations of existing methods. Namely, in contrast to classical approaches which train a single classifier regardless of the relative position of the candidate (thus ignoring valuable pose information), a region-dependent analysis is performed by considering four different areas. In addition, a study on the evolution of the classification performance according to the dimensionality of the principal subspace is carried out using PCA features within a SVM-based classification scheme. Indeed, the experiments performed on a publicly available database prove that PCA dimensionality requirements are region-dependent. Hence, in this work, the optimal configuration is adapted to each of them, rendering very good vehicle verification results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chiefly tables.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Video analytics play a critical role in most recent traffic monitoring and driver assistance systems. In this context, the correct detection and classification of surrounding vehicles through image analysis has been the focus of extensive research in the last years. Most of the pieces of work reported for image-based vehicle verification make use of supervised classification approaches and resort to techniques, such as histograms of oriented gradients (HOG), principal component analysis (PCA), and Gabor filters, among others. Unfortunately, existing approaches are lacking in two respects: first, comparison between methods using a common body of work has not been addressed; second, no study of the combination potentiality of popular features for vehicle classification has been reported. In this study the performance of the different techniques is first reviewed and compared using a common public database. Then, the combination capabilities of these techniques are explored and a methodology is presented for the fusion of classifiers built upon them, taking into account also the vehicle pose. The study unveils the limitations of single-feature based classification and makes clear that fusion of classifiers is highly beneficial for vehicle verification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report documents work undertaken in the demonstration of a low-cost Automatic Weight and Classification System (AWACS). An AWACS procurement specification and details of the results of the project are also included. The intent of the project is to support and encourage transferring research knowledge to state and local agencies and manufacturers through field demonstrations. Presently available, Weigh-in-Motion and Classification Systems are typically too expensive to permit the wide deployment necessary to obtain representative vehicle data. Piezo electric technology has been used in the United Kingdom and Europe and is believed to be the basic element in a low-cost AWACS. Low-cost systems have been installed at two sites, one in Portland Cement Concrete (PCC) pavement in Iowa and the other in Asphaltic Cement Concrete (ACC) pavement in Minnesota to provide experience with both types of pavement. The systems provide axle weights, gross vehicle weight, axle spacing, vehicle classification, vehicle speed, vehicle count, and time of arrival. In addition, system self-calibration and a method to predict contact tire pressure is included in the system design. The study has shown that in the PCC pavement, the AWACS is capable of meeting the needs of state and federal highway agencies, producing accuracies comparable to many current commercial WIM devices. This is being achieved at a procurement cost of substantially less than currently available equipment. In the ACC pavement the accuracies were less than those observed in the PCC pavement which is concluded to result from a low pavement rigidity at this site. Further work is needed to assess the AWACS performance at a range of sites in ACC pavements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Civil - FEIS

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a proposal for an automatic vehicle detection and classification (AVDC) system. The proposed AVDC should classify vehicles accordingly to the Portuguese legislation (vehicle height over the first axel and number of axels), and should also support profile based classification. The AVDC should also fulfill the needs of the Portuguese motorway operator, Brisa. For the classification based on the profile we propose:he use of Eigenprofiles, a technique based on Principal Components Analysis. The system should also support multi-lane free flow for future integration in this kind of environments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work provides a general description of the multi sensor data fusion concept, along with a new classification of currently used sensor fusion techniques for unmanned underwater vehicles (UUV). Unlike previous proposals that focus the classification on the sensors involved in the fusion, we propose a synthetic approach that is focused on the techniques involved in the fusion and their applications in UUV navigation. We believe that our approach is better oriented towards the development of sensor fusion systems, since a sensor fusion architecture should be first of all focused on its goals and then on the fused sensors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tire traces can be observed on several crime scenes as vehicles are often used by criminals. The tread abrasion on the road, while braking or skidding, leads to the production of small rubber particles which can be collected for comparison purposes. This research focused on the statistical comparison of Py-GC/MS profiles of tire traces and tire treads. The optimisation of the analytical method was carried out using experimental designs. The aim was to determine the best pyrolysis parameters regarding the repeatability of the results. Thus, the pyrolysis factor effect could also be calculated. The pyrolysis temperature was found to be five time more important than time. Finally, a pyrolysis at 650 °C during 15 s was selected. Ten tires of different manufacturers and models were used for this study. Several samples were collected on each tire, and several replicates were carried out to study the variability within each tire (intravariability). More than eighty compounds were integrated for each analysis and the variability study showed that more than 75% presented a relative standard deviation (RSD) below 5% for the ten tires, thus supporting a low intravariability. The variability between the ten tires (intervariability) presented higher values and the ten most variant compounds had a RSD value above 13%, supporting their high potential of discrimination between the tires tested. Principal Component Analysis (PCA) was able to fully discriminate the ten tires with the help of the first three principal components. The ten tires were finally used to perform braking tests on a racetrack with a vehicle equipped with an anti-lock braking system. The resulting tire traces were adequately collected using sheets of white gelatine. As for tires, the intravariability for the traces was found to be lower than the intervariability. Clustering methods were carried out and the Ward's method based on the squared Euclidean distance was able to correctly group all of the tire traces replicates in the same cluster than the replicates of their corresponding tire. Blind tests on traces were performed and were correctly assigned to their tire source. These results support the hypothesis that the tested tires, of different manufacturers and models, can be discriminated by a statistical comparison of their chemical profiles. The traces were found to be not differentiable from their source but differentiable from all the other tires present in the subset. The results are promising and will be extended on a larger sample set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Geographic Information System (GIS) is an indispensable software tool in forest planning. In forestry transportation, GIS can manage the data on the road network and solve some problems in transportation, such as route planning. Therefore, the aim of this study was to determine the pattern of the road network and define transport routes using GIS technology. The present research was conducted in a forestry company in the state of Minas Gerais, Brazil. The criteria used to classify the pattern of forest roads were horizontal and vertical geometry, and pavement type. In order to determine transport routes, a data Analysis Model Network was created in ArcGIS using an Extension Network Analyst, allowing finding a route shorter in distance and faster. The results showed a predominance of horizontal geometry classes average (3) and bad (4), indicating presence of winding roads. In the case of vertical geometry criterion, the class of highly mountainous relief (4) possessed the greatest extent of roads. Regarding the type of pavement, the occurrence of secondary coating was higher (75%), followed by primary coating (20%) and asphalt pavement (5%). The best route was the one that allowed the transport vehicle travel in a higher specific speed as a function of road pattern found in the study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a probabilistic object classifier for outdoor scene analysis as a first step in solving the problem of scene context generation. The method begins with a top-down control, which uses the previously learned models (appearance and absolute location) to obtain an initial pixel-level classification. This information provides us the core of objects, which is used to acquire a more accurate object model. Therefore, their growing by specific active regions allows us to obtain an accurate recognition of known regions. Next, a stage of general segmentation provides the segmentation of unknown regions by a bottom-strategy. Finally, the last stage tries to perform a region fusion of known and unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Furthermore, experimental results are shown and evaluated to prove the validity of our proposal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work provides a general description of the multi sensor data fusion concept, along with a new classification of currently used sensor fusion techniques for unmanned underwater vehicles (UUV). Unlike previous proposals that focus the classification on the sensors involved in the fusion, we propose a synthetic approach that is focused on the techniques involved in the fusion and their applications in UUV navigation. We believe that our approach is better oriented towards the development of sensor fusion systems, since a sensor fusion architecture should be first of all focused on its goals and then on the fused sensors