985 resultados para Vehicle Chassis Components.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Safety Bureau, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Safety Bureau, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental programme in 2007 used three air suspended heavy vehicles travelling over typical urban roads to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents methodology, interim analysis and partial results from that programme. Alterations to dynamic measures derived from axle-to-chassis forces for the case of standard-sized longitudinal air lines vs. the test case where larger longitudinal air lines were fitted are presented and discussed. This leads to conclusions regarding the possibility that dynamic loadings between heavy vehicle suspensions and chassis may be reduced by fitting larger longitudinal air lines to air-suspended heavy vehicles. Reductions in the shock and vibration loads to heavy vehicle suspension components could lead to lighter and more economical chassis and suspensions. This could therefore lead to reduced tare and increased payloads without an increase in gross vehicle mass.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The key to reducing cost of electric vehicles is integration. All too often systems such as the motor, motor controller, batteries and vehicle chassis/body are considered as separate problems. The truth is that a lot of trade-offs can be made between these systems, causing an overall improvement in many areas including total cost. Motor controller and battery cost have a relatively simple relationship; the less energy lost in the motor controller the less energy that has to be carried in the batteries, hence the lower the battery cost. A motor controller’s cost is primarily influenced by the cost of the switches. This paper will therefore present a method of assessing the optimal switch selection on the premise that the optimal switch is the one that produces the lowest system cost, where system cost is the cost of batteries + switches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis "COMPARATIVE ANALYSIS OF EFFICIENCY AND OPERATING CHARACTERISTICS OF AUTOMOTIVE POWERTRAIN ARCHITECTURES THROUGH CHASSIS DYNAMOMETER TESTING" was completed through a collaborative partnership between Michigan Technological University and Argonne National Laboratory under a contractual agreement titled "Advanced Vehicle Characterization at Argonne National Laboratory". The goal of this project was to investigate, understand and document the performance and operational strategy of several modern passenger vehicles of various architectures. The vehicles were chosen to represent several popular engine and transmission architectures and were instrumented to allow for data collection to facilitate comparative analysis. In order to ensure repeatability and reliability during testing, each vehicle was tested over a series of identical drive cycles in a controlled environment utilizing a vehicle chassis dynamometer. Where possible, instrumentation was preserved between vehicles to ensure robust data collection. The efficiency and fuel economy performance of the vehicles was studied. In addition, the powertrain utilization strategies, significant energy loss sources, tailpipe emissions, combustion characteristics, and cold start behavior were also explored in detail. It was concluded that each vehicle realizes different strengths and suffers from different limitations in the course of their attempts to maximize efficiency and fuel economy. In addition, it was observed that each vehicle regardless of architecture exhibits significant energy losses and difficulties in cold start operation that can be further improved with advancing technology. It is clear that advanced engine technologies and driveline technologies are complimentary aspects of vehicle design that must be utilized together for best efficiency improvements. Finally, it was concluded that advanced technology vehicles do not come without associated cost; the complexity of the powertrains and lifecycle costs must be considered to understand the full impact of advanced vehicle technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O presente trabalho descreve a análise feita a um veículo de todo o terreno. O kartcross/buggy em estudo é usado em provas do tipo Baja, sendo estas provas longas e com traçados sinuosos. O veículo, já construído, foi testado através de softwares, a nível estrutural e ciclístico, pretendendo-se assim efetuar engenharia inversa sobre o mesmo. No decorrer da sua utilização normal o kartcross/buggy sofre vários tipos de solicitações, como sejam aceleração, travagem e força centrípta em curva. Portanto, o veículo deve ser capaz de suportar estes esforços e ter uma boa habilidade. Além dos testes em uso corrente foi analisada também a rigidez torsional do quadro do veículo e do veículo completo, podendo-se assim melhorar estes valores. A nível ciclístico foram analisados os parâmetros das suspensões como o camber, convergência/divergência, caster, entre outros. Da análise destes parâmetros e possível fazerem-se melhorias de forma a que o veículo tenha um melhor desempenho. Para validar os testes computacionais efetuados foi reproduzido experimentalmente o teste da rigidez torsional. No final, compararam-se os valores numéricos com os experimentais e aferir se o modelo se encontra bem representado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.