910 resultados para Vascular segmentation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The vascular segmentation is important in diagnosing vascular diseases like stroke and is hampered by noise in the image and very thin vessels that can pass unnoticed. One way to accomplish the segmentation is extracting the centerline of the vessel with height ridges, which uses the intensity as features for segmentation. This process can take from seconds to minutes, depending on the current technology employed. In order to accelerate the segmentation method proposed by Aylward [Aylward & Bullitt 2002] we have adapted it to run in parallel using CUDA architecture. The performance of the segmentation method running on GPU is compared to both the same method running on CPU and the original Aylward s method running also in CPU. The improvemente of the new method over the original one is twofold: the starting point for the segmentation process is not a single point in the blood vessel but a volume, thereby making it easier for the user to segment a region of interest, and; the overall gain method was 873 times faster running on GPU and 150 times more fast running on the CPU than the original CPU in Aylward

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye’s normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'imagerie intravasculaire ultrasonore (IVUS) est une technologie médicale par cathéter qui produit des images de coupe des vaisseaux sanguins. Elle permet de quantifier et d'étudier la morphologie de plaques d'athérosclérose en plus de visualiser la structure des vaisseaux sanguins (lumière, intima, plaque, média et adventice) en trois dimensions. Depuis quelques années, cette méthode d'imagerie est devenue un outil de choix en recherche aussi bien qu'en clinique pour l'étude de la maladie athérosclérotique. L'imagerie IVUS est par contre affectée par des artéfacts associés aux caractéristiques des capteurs ultrasonores, par la présence de cônes d'ombre causés par les calcifications ou des artères collatérales, par des plaques dont le rendu est hétérogène ou par le chatoiement ultrasonore (speckle) sanguin. L'analyse automatisée de séquences IVUS de grande taille représente donc un défi important. Une méthode de segmentation en trois dimensions (3D) basée sur l'algorithme du fast-marching à interfaces multiples est présentée. La segmentation utilise des attributs des régions et contours des images IVUS. En effet, une nouvelle fonction de vitesse de propagation des interfaces combinant les fonctions de densité de probabilité des tons de gris des composants de la paroi vasculaire et le gradient des intensités est proposée. La segmentation est grandement automatisée puisque la lumière du vaisseau est détectée de façon entièrement automatique. Dans une procédure d'initialisation originale, un minimum d'interactions est nécessaire lorsque les contours initiaux de la paroi externe du vaisseau calculés automatiquement sont proposés à l'utilisateur pour acceptation ou correction sur un nombre limité d'images de coupe longitudinale. La segmentation a été validée à l'aide de séquences IVUS in vivo provenant d'artères fémorales provenant de différents sous-groupes d'acquisitions, c'est-à-dire pré-angioplastie par ballon, post-intervention et à un examen de contrôle 1 an suivant l'intervention. Les résultats ont été comparés avec des contours étalons tracés manuellement par différents experts en analyse d'images IVUS. Les contours de la lumière et de la paroi externe du vaisseau détectés selon la méthode du fast-marching sont en accord avec les tracés manuels des experts puisque les mesures d'aire sont similaires et les différences point-à-point entre les contours sont faibles. De plus, la segmentation par fast-marching 3D s'est effectuée en un temps grandement réduit comparativement à l'analyse manuelle. Il s'agit de la première étude rapportée dans la littérature qui évalue la performance de la segmentation sur différents types d'acquisition IVUS. En conclusion, la segmentation par fast-marching combinant les informations des distributions de tons de gris et du gradient des intensités des images est précise et efficace pour l'analyse de séquences IVUS de grandes tailles. Un outil de segmentation robuste pourrait devenir largement répandu pour la tâche ardue et fastidieuse qu'est l'analyse de ce type d'images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le foie est un organe vital ayant une capacité de régénération exceptionnelle et un rôle crucial dans le fonctionnement de l’organisme. L’évaluation du volume du foie est un outil important pouvant être utilisé comme marqueur biologique de sévérité de maladies hépatiques. La volumétrie du foie est indiquée avant les hépatectomies majeures, l’embolisation de la veine porte et la transplantation. La méthode la plus répandue sur la base d'examens de tomodensitométrie (TDM) et d'imagerie par résonance magnétique (IRM) consiste à délimiter le contour du foie sur plusieurs coupes consécutives, un processus appelé la «segmentation». Nous présentons la conception et la stratégie de validation pour une méthode de segmentation semi-automatisée développée à notre institution. Notre méthode représente une approche basée sur un modèle utilisant l’interpolation variationnelle de forme ainsi que l’optimisation de maillages de Laplace. La méthode a été conçue afin d’être compatible avec la TDM ainsi que l' IRM. Nous avons évalué la répétabilité, la fiabilité ainsi que l’efficacité de notre méthode semi-automatisée de segmentation avec deux études transversales conçues rétrospectivement. Les résultats de nos études de validation suggèrent que la méthode de segmentation confère une fiabilité et répétabilité comparables à la segmentation manuelle. De plus, cette méthode diminue de façon significative le temps d’interaction, la rendant ainsi adaptée à la pratique clinique courante. D’autres études pourraient incorporer la volumétrie afin de déterminer des marqueurs biologiques de maladie hépatique basés sur le volume tels que la présence de stéatose, de fer, ou encore la mesure de fibrose par unité de volume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern medical imaging techniques enable the acquisition of in vivo high resolution images of the vascular system. Most common methods for the detection of vessels in these images, such as multiscale Hessian-based operators and matched filters, rely on the assumption that at each voxel there is a single cylinder. Such an assumption is clearly violated at the multitude of branching points that are easily observed in all, but the Most focused vascular image studies. In this paper, we propose a novel method for detecting vessels in medical images that relaxes this single cylinder assumption. We directly exploit local neighborhood intensities and extract characteristics of the local intensity profile (in a spherical polar coordinate system) which we term as the polar neighborhood intensity profile. We present a new method to capture the common properties shared by polar neighborhood intensity profiles for all the types of vascular points belonging to the vascular system. The new method enables us to detect vessels even near complex extreme points, including branching points. Our method demonstrates improved performance over standard methods on both 2D synthetic images and 3D animal and clinical vascular images, particularly close to vessel branching regions. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The parenchymal distribution of the splenic artery was studied in order to obtain anatomical basis for partial splenectomy. Thirty two spleens were studied, 26 spleens of healthy horses weighing 320 to 450kg, aged 3 to 12 years and 6 spleens of fetus removed from slaughterhouse. The spleens were submitted to arteriography and scintigraphy in order to have their vascular pattern examined and compared to the external aspect of the organ aiming establish anatomo-surgical segments. All radiographs were photographed with a digital camera and the digital images were submitted to a measuring system for comparative analysis of areas of dorsal and ventral anatomo-surgical segments. Anatomical investigations into the angioarchitecture of the equine spleen showed a paucivascular area, which coincides with a thinner external area, allowing the organ to be divided in two anatomo-surgical segments of approximately 50% of the organ each.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visualization of the vascular systems of organs or of small animals is important for an assessment of basic physiological conditions, especially in studies that involve genetically manipulated mice. For a detailed morphological analysis of the vascular tree, it is necessary to demonstrate the system in its entirety. In this study, we present a new lipophilic contrast agent, Angiofil, for performing postmortem microangiography by using microcomputed tomography. The new contrast agent was tested in 10 wild-type mice. Imaging of the vascular system revealed vessels down to the caliber of capillaries, and the digital three-dimensional data obtained from the scans allowed for virtual cutting, amplification, and scaling without destroying the sample. By use of computer software, parameters such as vessel length and caliber could be quantified and remapped by color coding onto the surface of the vascular system. The liquid Angiofil is easy to handle and highly radio-opaque. Because of its lipophilic abilities, it is retained intravascularly, hence it facilitates virtual vessel segmentation, and yields an enduring signal which is advantageous during repetitive investigations, or if samples need to be transported from the site of preparation to the place of actual analysis, respectively. These characteristics make Angiofil a promising novel contrast agent; when combined with microcomputed tomography, it has the potential to turn into a powerful method for rapid vascular phenotyping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive technique for quantitative assessment of the integrity of blood-brain barrier and blood-spinal cord barrier (BSCB) in the presence of central nervous system pathologies. However, the results of DCE-MRI show substantial variability. The high variability can be caused by a number of factors including inaccurate T1 estimation, insufficient temporal resolution and poor contrast-to-noise ratio. My thesis work is to develop improved methods to reduce the variability of DCE-MRI results. To obtain fast and accurate T1 map, the Look-Locker acquisition technique was implemented with a novel and truly centric k-space segmentation scheme. In addition, an original multi-step curve fitting procedure was developed to increase the accuracy of T1 estimation. A view sharing acquisition method was implemented to increase temporal resolution, and a novel normalization method was introduced to reduce image artifacts. Finally, a new clustering algorithm was developed to reduce apparent noise in the DCE-MRI data. The performance of these proposed methods was verified by simulations and phantom studies. As part of this work, the proposed techniques were applied to an in vivo DCE-MRI study of experimental spinal cord injury (SCI). These methods have shown robust results and allow quantitative assessment of regions with very low vascular permeability. In conclusion, applications of the improved DCE-MRI acquisition and analysis methods developed in this thesis work can improve the accuracy of the DCE-MRI results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La tomografía axial computerizada (TAC) es la modalidad de imagen médica preferente para el estudio de enfermedades pulmonares y el análisis de su vasculatura. La segmentación general de vasos en pulmón ha sido abordada en profundidad a lo largo de los últimos años por la comunidad científica que trabaja en el campo de procesamiento de imagen; sin embargo, la diferenciación entre irrigaciones arterial y venosa es aún un problema abierto. De hecho, la separación automática de arterias y venas está considerado como uno de los grandes retos futuros del procesamiento de imágenes biomédicas. La segmentación arteria-vena (AV) permitiría el estudio de ambas irrigaciones por separado, lo cual tendría importantes consecuencias en diferentes escenarios médicos y múltiples enfermedades pulmonares o estados patológicos. Características como la densidad, geometría, topología y tamaño de los vasos sanguíneos podrían ser analizados en enfermedades que conllevan remodelación de la vasculatura pulmonar, haciendo incluso posible el descubrimiento de nuevos biomarcadores específicos que aún hoy en dípermanecen ocultos. Esta diferenciación entre arterias y venas también podría ayudar a la mejora y el desarrollo de métodos de procesamiento de las distintas estructuras pulmonares. Sin embargo, el estudio del efecto de las enfermedades en los árboles arterial y venoso ha sido inviable hasta ahora a pesar de su indudable utilidad. La extrema complejidad de los árboles vasculares del pulmón hace inabordable una separación manual de ambas estructuras en un tiempo realista, fomentando aún más la necesidad de diseñar herramientas automáticas o semiautomáticas para tal objetivo. Pero la ausencia de casos correctamente segmentados y etiquetados conlleva múltiples limitaciones en el desarrollo de sistemas de separación AV, en los cuales son necesarias imágenes de referencia tanto para entrenar como para validar los algoritmos. Por ello, el diseño de imágenes sintéticas de TAC pulmonar podría superar estas dificultades ofreciendo la posibilidad de acceso a una base de datos de casos pseudoreales bajo un entorno restringido y controlado donde cada parte de la imagen (incluyendo arterias y venas) está unívocamente diferenciada. En esta Tesis Doctoral abordamos ambos problemas, los cuales están fuertemente interrelacionados. Primero se describe el diseño de una estrategia para generar, automáticamente, fantomas computacionales de TAC de pulmón en humanos. Partiendo de conocimientos a priori, tanto biológicos como de características de imagen de CT, acerca de la topología y relación entre las distintas estructuras pulmonares, el sistema desarrollado es capaz de generar vías aéreas, arterias y venas pulmonares sintéticas usando métodos de crecimiento iterativo, que posteriormente se unen para formar un pulmón simulado con características realistas. Estos casos sintéticos, junto a imágenes reales de TAC sin contraste, han sido usados en el desarrollo de un método completamente automático de segmentación/separación AV. La estrategia comprende una primera extracción genérica de vasos pulmonares usando partículas espacio-escala, y una posterior clasificación AV de tales partículas mediante el uso de Graph-Cuts (GC) basados en la similitud con arteria o vena (obtenida con algoritmos de aprendizaje automático) y la inclusión de información de conectividad entre partículas. La validación de los fantomas pulmonares se ha llevado a cabo mediante inspección visual y medidas cuantitativas relacionadas con las distribuciones de intensidad, dispersión de estructuras y relación entre arterias y vías aéreas, los cuales muestran una buena correspondencia entre los pulmones reales y los generados sintéticamente. La evaluación del algoritmo de segmentación AV está basada en distintas estrategias de comprobación de la exactitud en la clasificación de vasos, las cuales revelan una adecuada diferenciación entre arterias y venas tanto en los casos reales como en los sintéticos, abriendo así un amplio abanico de posibilidades en el estudio clínico de enfermedades cardiopulmonares y en el desarrollo de metodologías y nuevos algoritmos para el análisis de imágenes pulmonares. ABSTRACT Computed tomography (CT) is the reference image modality for the study of lung diseases and pulmonary vasculature. Lung vessel segmentation has been widely explored by the biomedical image processing community, however, differentiation of arterial from venous irrigations is still an open problem. Indeed, automatic separation of arterial and venous trees has been considered during last years as one of the main future challenges in the field. Artery-Vein (AV) segmentation would be useful in different medical scenarios and multiple pulmonary diseases or pathological states, allowing the study of arterial and venous irrigations separately. Features such as density, geometry, topology and size of vessels could be analyzed in diseases that imply vasculature remodeling, making even possible the discovery of new specific biomarkers that remain hidden nowadays. Differentiation between arteries and veins could also enhance or improve methods processing pulmonary structures. Nevertheless, AV segmentation has been unfeasible until now in clinical routine despite its objective usefulness. The huge complexity of pulmonary vascular trees makes a manual segmentation of both structures unfeasible in realistic time, encouraging the design of automatic or semiautomatic tools to perform the task. However, this lack of proper labeled cases seriously limits in the development of AV segmentation systems, where reference standards are necessary in both algorithm training and validation stages. For that reason, the design of synthetic CT images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image (including arteries and veins) is differentiated unequivocally. In this Ph.D. Thesis we address both interrelated problems. First, the design of a complete framework to automatically generate computational CT phantoms of the human lung is described. Starting from biological and imagebased knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. These synthetic cases, together with labeled real CT datasets, have been used as reference for the development of a fully automatic pulmonary AV segmentation/separation method. The approach comprises a vessel extraction stage using scale-space particles and their posterior artery-vein classification using Graph-Cuts (GC) based on arterial/venous similarity scores obtained with a Machine Learning (ML) pre-classification step and particle connectivity information. Validation of pulmonary phantoms from visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems, show good correspondence between real and synthetic lungs. The evaluation of the Artery-Vein (AV) segmentation algorithm, based on different strategies to assess the accuracy of vessel particles classification, reveal accurate differentiation between arteries and vein in both real and synthetic cases that open a huge range of possibilities in the clinical study of cardiopulmonary diseases and the development of methodological approaches for the analysis of pulmonary images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The human retinal vasculature has been demonstrated to exhibit fractal, or statistically self similar properties. Fractal analysis offers a simple quantitative method to characterise the complexity of the branching vessel network in the retina. Several methods have been proposed to quantify the fractal properties of the retina. Methods: Twenty five healthy volunteers underwent retinal photography, retinal oximetry and ocular biometry. A robust method to evaluate the fractal properties of the retinal vessels is proposed; it consists of manual vessel segmentation and box counting of 50 degree retinal photographs centred on the fovea. Results: Data is presented on the associations between the fractal properties of the retinal vessels and various functional properties of the retina. Conclusion Fractal properties of the retina could offer a promising tool to assess the risk and prognostic factors that define retinal disease. Outstanding efforts surround the need to adopt a standardised protocol for assessing the fractal properties of the retina, and further demonstrate its association with disease processes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: