955 resultados para Vascular remodelling
Resumo:
Neo-intima development and atherosclerosis limit long-term vein graft use for revascularization of ischaemic tissues. Using a rat model, which is technically less challenging than smaller rodents, we provide evidence that the temporal morphological, cellular, and key molecular events during vein arterialization resemble the human vein graft adaptation. Right jugular vein was surgically connected to carotid artery and observed up to 90 days. Morphometry demonstrated gradual thickening of the medial layer and important formation of neo-intima with deposition of smooth muscle cells (SMC) in the subendothelial layer from day 7 onwards. Transmission electron microscopy showed that SMCs switch from the contractile to synthetic phenotype on day 3 and new elastic lamellae formation occurs from day 7 onwards. Apoptosis markedly increased on day 1, while alpha-actin immunostaining for SMC almost disappeared by day 3. On day 7, cell proliferation reached the highest level and cellular density gradually increased until day 90. The relative magnitude of cellular changes was higher in the intima vs. the media layer (100 vs. 2 times respectively). Cyclin-dependent kinase inhibitors (CDKIs) p27(Kip1) and p16(INKA) remained unchanged, whereas p21(Cip1) was gradually downregulated, reaching the lowest levels by day 7 until day 90. Taken together, these data indicate for the first time that p21(Cip1) is the main CDKI protein modulated during the arterialization process the rat model of vein arterialization that may be useful to identify and validate new targets and interventions to improve the long-term patency of vein grafts.
Resumo:
This study investigated whether pulmonary Vascular remodelling in hypoxic pulmonary hypertensive rats (10% oxygen; 4 weeks) could be prevented by treatment, during hypoxia, with amlodipine (IO mg/kg/day, p.o.), either alone or in combination with the angiotensin converting enzyme inhibitor, perindopril (30 mg/kg/day, p.o.). Medial thickening of pulmonary arteries (30-500 mum o.d.) was attenuated by amlodipine whereas it was totally prevented by the combination treatment (amlodipine plus perindopril); neomuscularisation of small alveolar arteries (assessed from critical closing pressure in isolated perfused lungs) was not affected. Pulmonary vascular resistance (isolated perfused lungs) was reduced by both treatment regimes but only combination treatment reduced right ventricular hypertrophy. Taus, amlodipine has anti-remodelling properties in pulmonary hypertensive rats. The finding that combining amlodipine with another anti-remodelling drug produced effects on vascular structure that were additive raises the question of whether combination therapy with two different anti-remodelling drugs may be of value in the treatment of patients with hypoxic (and possibly other forms of) pulmonary hypertension. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Introduction: The vasoconstricting peptide Endothelin-1 (ET-1) has been associated with atherosclerotic cardiovascular disease, AAA, hypertension and hypercholesterolemia. It is known to stimulate quiescent vascular smooth muscle cells (VSMC) into the growth cycle and has been linked to intimal thickening following endothelial injury and is associated with vessel wall remodelling in salt-sensitive hypertension models. Enhanced ET-1 expression has been reported in the internal mammary artery (IMA) and was markedly higher in patients undergoing cardiac bypass surgery who were diabetic and /or hypercholesterolemic. Aims: To firstly review the histopathology of the IMA and secondly, determine the relationship between ET-1 expression in this vessel and mitogenic activity in the medial VSMC. Methods: Vessel tissue collected at the time of CABG surgery was formalin-fixed and paraffin-embedded for histological investigation. Cross sections of the left distal IMAwere stained with Alcian Blue/Verhoeff’s van Gieson to assess medial degeneration and identify the elastic lamellae and picrosirius red to determine the collagen content (specifically type I and type III). Immunohistochemistry staining was used to assess VSMC growth (PCNA label), tissue ET-1 expression, VSMC (SMCa-actin) area and macrophage/monocyte (anti-CD68) infiltration. Quantitative analysis was performed to measure the VSMC area in relation to ET-1 staining. Results: Fifty-five IMA specimens from the CABG patients (10F; 45M; mean age 65 years) were collected for this study. Fourteen donor IMAspecimens were used as controls (7F; 7M; mean age 45 years). Significant medial hypertrophy, VSMC disorganisation and elastic lamellae destruction was detected in the CABG IMA. The amount of Alcian blue staining in the CABG IMA was almost double that of the control (31.85+/14.52% Vs 17.10+/9.96%, P= .0006). Total collagen and type I collagen content was significantly increased compared with controls (65.8+/18.3% Vs 33.7 + / 13.7%, P= .07), (14.2 + /10.0% Vs 4.8 + /2.8%, P= .01), respectively. Tissue ET-1 and PCNA labelling were also significantly elevated the CABG IMA specimens relative to the controls (69.99 + /18.74%Vs 23.33 + /20.53%, P= .0001, and 37.29 + /12.88% Vs 11.06 + /8.18, P= .0001), respectively. There was mild presence of macrophages and monocytes in both CABG and control tissue. Conclusions: The IMA from CABG patients has elevated levels of type I collagen in the extracellular matrix indicative of fibrosis and was coupled with deleterious structural remodelling. Abnormally high levels of ET-1 were measured in the medial SMC layer and was associated with VSMC growth but not related to any chronic inflammatory response within the vessel wall.
Resumo:
BACKGROUND AND PURPOSE Mounting evidence implicates matrix metalloproteinase (MMP) in the vascular dysfunction and remodelling associated with hypertension. We tested the hypothesis that treatment with pyrrolidine dithiocarbamate (PDTC), which interferes with NF-kappa B-induced MMPs gene transcription, could exert antihypertensive effects, prevent MMP-2 and MMP-9 up-regulation, and protect against the functional alterations and vascular remodelling of two-kidney, one clip (2K1C) hypertension. EXPERIMENTAL APPROACH Sham-operated or hypertensive rats were treated with vehicle or PDTC (100 mg.Kg(-1).day(-1)) by gavage for 8 weeks. Systolic blood pressure (SBP) was monitored weekly. Aortic rings were isolated to assess endothelium-dependent relaxations. Quantitative morphometry of structural alterations of the aortic wall was carried out in haematoxylin/eosin sections. Formation of vascular reactive oxygen species (ROS), and inducible (i) NOS and phosphorylated-p65 NF-kappa B subunit expression were measured in the aortas. MMP-2 and MMP-9 aortic levels and gelatinolytic activity were determined by gelatin and in situ zymography and by immunofluorescence. KEY RESULTS Treatment with PDTC attenuated the increases in SBP and prevented the endothelial dysfunction associated with 2K1C hypertension. Moreover, PDTC reversed the vascular aortic remodelling, the increases in aortic ROS levels and in iNOS and phosphorylated-p65 NF-kappa B expression found in 2K1C rats. These effects were associated with attenuation of 2K1C up-regulation of aortic MMP-2 and MMP-9 levels and gelatinolytic activity. CONCLUSION AND IMPLICATIONS These findings suggest that PDTC down-regulates vascular MMPs and ameliorates vascular dysfunction and remodelling in renovascular hypertension, thus providing evidence supporting the suggestion that PDTC is probably a good candidate to be used to treat hypertension.
Resumo:
To test the hypothesis that Vegf-B contributes to the pulmonary vascular remodelling, and the associated pulmonary hypertension, induced by exposure of mice to chronic hypoxia. Methods: Right ventricular systolic pressure, the ratio of right ventricle/[left ventricle+septum] (RV/[LV+S]) and the thickness of the media (relative to vessel diameter) of intralobar pulmonary arteries (o.d. 50-150 and 151-420 mum) were determined in Vegfb knockout mice (Vegfb(-/-); n=17) and corresponding wild-type mice (Vegfb(+/+); n=17) exposed to chronic hypoxia (10% oxygen) or housed in room air (normoxia) for 4 weeks. Results: In Vegfb(+/+) mice hypoxia caused (i) pulmonary hypertension (a 70% increase in right ventricular systolic pressure compared with normoxic Vegfb(+/+) mice; P
Resumo:
1 Hypoxic pulmonary hypertension in rats (10% O-2, 4 weeks) is characterized by changes in pulmonary vascular structure and function. The effects of the angiotensin converting enzyme inhibitor perindopril (oral gavage, once daily for the 4 weeks of hypoxia) on these changes were examined. 2 Perindopril (30 mg kg(-1) d(-1)) caused an 18% reduction in pulmonary artery pressure in hypoxic rats. 3 Structural changes (remodelling) in hypoxic rats included increases in (i) critical closing pressure in isolated perfused lungs (remodelling of arteries (50 mu m 0.d.) and (ii) medial wall thickness of intralobar pulmonary arteries, assessed histologically (vessels 30-100 and 101-500 mu m o.d.). Perindopril 10 and 30 mg kg(-1) d(-1) attenuated remodelling in vessels less than or equal to 100 mu m (lungs and histology), 30 mg kg(-1) d(-1) was effective in vessels 101-500 mu m but neither dose prevented hypertrophy of main pulmonary artery. 3 mg kg(-1) d(-1) was without effect. 4 Perindopril (30 mg kg(-1) d(-1)) prevented the exaggerated hypoxic pulmonary vasoconstrictor response seen in perfused lungs from hypoxic rats but did not prevent any of the functional changes (i.e. the increased contractions to 5-HT, U46619 (thromboxane-mimetic) and K+ and diminished contractions to angiotensins I and II) seen in isolated intralobar or main pulmonary arteries. Acetylcholine responses were unaltered in hypoxic rats. 5 We conclude that, in hypoxic rats, altered pulmonary vascular function is largely independent of remodelling. Hence any drug that affects only remodelling is unlikely to restore pulmonary vascular function to normal and, like perindopril, may have only a modest effect on pulmonary artery pressure.
Resumo:
Aim - The aim of the study was to determine the potential for KV1 potassium channel blockers as inhibitors of human neoinitimal hyperplasia. Methods and results - Blood vessels were obtained from patients or mice and studied in culture. Reverse transcriptasepolymerase chain reaction and immunocytochemistry were used to detect gene expression. Whole-cell patch-clamp, intracellular calcium measurement, cell migration assays, and organ culture were used to assess channel function. KV1.3 was unique among the KV1 channels in showing preserved and up-regulated expression when the vascular smooth muscle cells switched to the proliferating phenotype. There was strong expression in neointimal formations. Voltage-dependent potassium current in proliferating cells was sensitive to three different blockers of KV1.3 channels. Calcium entry was also inhibited. All three blockers reduced vascular smooth muscle cell migration and the effects were non-additive. One of the blockers (margatoxin) was highly potent, suppressing cell migration with an IC of 85 pM. Two of the blockers were tested in organ-cultured human vein samples and both inhibited neointimal hyperplasia. Conclusion - KV1.3 potassium channels are functional in proliferating mouse and human vascular smooth muscle cells and have positive effects on cell migration. Blockers of the channels may be useful as inhibitors of neointimal hyperplasia and other unwanted vascular remodelling events. © 2010 The Author.
Resumo:
Aims Cysteine- and glycine-rich protein 3/muscle LIM-domain protein (CRP3/MLP) mediates protein-protein interaction with actin filaments in the heart and is involved in muscle differentiation and vascular remodelling. Here, we assessed the induction of CRP3/MLP expression during arterialization in human and rat veins. Methods and results Vascular CRP3/MLP expression was mainly observed in arterial samples from both human and rat. Using quantitative real time RT-PCR, we demonstrated that the CRP3/MLP expression was 10 times higher in smooth muscle cells (SMCs) from human mammary artery (h-MA) vs. saphenous vein (h-SV). In endothelial cells (ECs), CRP3/MLP was scarcely detected in either h-MA or h-SV. Using an ex vivo flow through system that mimics arterial condition, we observed induction of CRP3/MLP expression in arterialized h-SV. Interestingly, the upregulation of CRP3/MLP was primarily dependent on stretch stimulus in SMCs, rather than shear stress in ECs. Finally, using a rat vein in vivo arterialization model, early (1-14 days) CRP3/MLP immunostaining was observed predominantly in the inner layer and later (28-90 days) it appeared more scattered in the vessel layers. Conclusion Here we provide evidence that CRP3/MLP is primarily expressed in arterial SMCs and that stretch is the main stimulus for CRP3/MLP induction in veins exposed to arterial haemodynamic conditions.
Resumo:
The effects of S-nitrosocaptopril (SNOcap), administered either intravenously or by oral gavage, on pulmonary artery pressure (PAP) were examined in anaesthetised normotensive rats and rats with hypoxic pulmonary hypertension (10% oxygen for 1 week). Mean PAP (MPAP) values in hypoxic and normoxic rats were (mmHg) 26 +/- 1.7 and 15 +/- 1.1, respectively. When given intravenously, 1 mg kg(-1) SNOcap reduced MPAP by 28 and 32% in hypoxic and normoxic rats, respectively. The effects of 2 mg kg(-1) were no greater than those of 1 mg kg(-1). Pulmonary vasoclepressor responses reached equilibrium in 1.7 +/- 0.18 min following intravenous administration. When given orally 30 min before the measurement of PAP, 30 mg kg(-1), but not 10 mg kg(-1), significantly reduced MPAP in hypoxic rats to 17 +/- 1.5 mmHg. These in-vivo data are consistent with previous in-vitro data showing that SNOcap has direct pulmonary vasorelaxant properties in both large and small pulmonary arteries and also show that SNOcap causes pulmonary vasodepression in the setting of pulmonary hypertension. Since SNOcap also inhibits pulmonary vascular angiotensin converting enzyme (ACE) in pulmonary blood vessels (previous study), it would be an interesting drug with which to assess the benefits of direct pulmonary vasodilatation combined with ACE inhibition (which attentuates pulmonary vascular remodelling) in a long-term study in pulmonary hypertension.
Resumo:
Résumé Objectif : L'hyperplasie intimale est un processus de remodelage vasculaire qui apparaît après une lésion vasculaire. Les mécanismes impliqués dans l'hyperplasie intimale sont la prolifération, la dédifférentiation et la migration des cellules musculaires lisses depuis la média vers l'espace sous-intimal. Nous avons émis l'hypothèse que les jonctions communicantes de type gap, qui coordonnent certains processus physiologiques tels que la croissance et la différentiation cellulaire, pouvaient participer au développement de l'hyperplasie intimale. Méthodes : Des segments de veines saphènes humaines prélevées chirurgicalement lors de pontages, ont été ouverts longitudinalement avec la surface luminale placée vers le haut et maintenus en culture pendant 14 jours. Des fragments veineux ont été préparés pour une évaluation histologique, pour des mesures de l'épaisseur de la néointima, et pour des analyses immunocytochimiques de l'ARN messager ainsi que des protéines. Résultats : Parmi les 4 connexines (Cxs 37, 40, 43 et 45) qui forment les jonctions communicantes dans les veines, nous avons focalisé notre étude sur l'expression des Cxs 43 et 40; nous avons démontré que la Cx43 est exprimée dans les cellules musculaires lisses et les cellules endothéliales alors que la Cx40 est uniquement présente dans l'endothélium. Après 14 jours en culture, des analyses histomorphométriques ont montré une augmentation significative de l'épaisseur de l'intima démontrant la présence d'hyperplasie intimale. Une analyse temporelle a révélé une augmentation progressive de la Cx43 jusqu'à une augmentation maximale de six à huit fois au niveau de l'ARN messager et des protéines après 14 jours en culture. Au contraire, l'expression de la Cx40 n'était pas modifiée. Des analyses par immunofluorescence ont montré également une augmentation de la Cx43 dans les membranes des cellules musculaires lisses de la média. Le développement de l'hyperplasie intimale in vitro est diminué en présence de fluvastatin et cette diminution est associée à une réduction de l'expression de la Cx43. Conclusions : Ces données démontrent que la Cx43 est augmentée in vitro pendant le processus d'hyperplasie intimale et que la fluvastatin prévient cette induction. Ces résultats suggèrent un rôle crucial joué par la communication intercellulaire impliquant la Cx43 dans la veine humaine durant le développement de l'hyperplasie intimale. Abstract Objective: Intimal hyperplasia is a vascular remodelling process that occurs after a vascular injury. The mechanisms involved in intimal hyperplasia are proliferation, dedifferentiation, and migration of medial smooth muscle cells towards the subintimal space. We postulated that gap junctions, which coordinate physiologic processes such as cell growth and differentiation, might participate in the development of intimal hyperplasia. connexin43 (Cx43) expression levels may be altered in intimal hyperplasia, and we therefore evaluated the regulated expression of Cx43 in human saphenous veins in culture in the presence or not of fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity. Methods: Segments of harvested human saphenous veins, obtained at the time of bypass graft, were opened longitudinally with the luminal surface uppermost and maintained in culture for 14 days. Vein fragments were then processed for histologic examination, neointimal thickness measurements, immunocytochemistry, RNA, and proteins analysis. Results: Of the four connexins (Cx37, 40, 43, and 45), we focused on Cx43 and Cx40, which we found by real-time polymerase chain reaction to be expressed in the saphenous vein because they are the predominant connexins expressed by smooth muscle cells and endothelial cells. Afrer 14 days of culture, histomorphometric analysis showed a significant increase in the intimal thickness as observed during the process of intimal hyperplasia. Atime-course analysis revealed a progressive upregulation of Cx43 to reach a maximal increase of sixfold to eightfold at both transcript and protein levels after 14 days in culture. In contrast, the expression of Cx40, abundantly expressed in the endothelial cells, was not altered. Immunofluorescence showed a large increase in Cx43 within smooth muscle cell membranes of the media layer. The development of intimal hyperplasia in vitro was decreased in presence of fluvastatin and was associated with reduced Cx43 expression. Conclusions: These data show that Cx43 is increased in vitro during the process of intimal hyperplasia and that fluvastatin could prevent this induction, supporting a critical role for Cx43-mediated gap-junctional communication in the human vein during the development of intimal hyperplasia. (J Vasc Surg 2005;41:1043-52.)
Resumo:
BACKGROUND: Pulmonary vascular diseases are increasingly recognised as important clinical conditions. Pulmonary hypertension associated with a range of aetiologies is difficult to treat and associated with progressive morbidity and mortality. Current therapies for pulmonary hypertension include phosphodiesterase type 5 inhibitors, endothelin receptor antagonists, or prostacyclin mimetics. However, none of these provide a cure and the clinical benefits of these drugs individually decline over time. There is, therefore, an urgent need to identify new treatment strategies for pulmonary hypertension. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that the PPARbeta/delta agonist GW0742 induces vasorelaxation in systemic and pulmonary vessels. Using tissue from genetically modified mice, we show that the dilator effects of GW0742 are independent of the target receptor PPARbeta/delta or cell surface prostacyclin (IP) receptors. In aortic tissue, vascular relaxant effects of GW0742 were not associated with increases in cGMP, cAMP or hyperpolarisation, but were attributed to inhibition of RhoA activity. In a rat model of hypoxia-induced pulmonary hypertension, daily oral dosing of animals with GW0742 (30 mg/kg) for 3 weeks significantly reduced the associated right heart hypertrophy and right ventricular systolic pressure. GW0742 had no effect on vascular remodelling induced by hypoxia in this model. CONCLUSIONS/SIGNIFICANCE: These observations are the first to show a therapeutic benefit of 'PPARbeta/delta' agonists in experimental pulmonary arterial hypertension and provide pre-clinical evidence to favour clinical trials in man.
Resumo:
OBJECTIVE: Intimal hyperplasia is a vascular remodelling process that occurs after a vascular injury. The mechanisms involved in intimal hyperplasia are proliferation, dedifferentiation, and migration of medial smooth muscle cells towards the subintimal space. We postulated that gap junctions, which coordinate physiologic processes such as cell growth and differentiation, might participate in the development of intimal hyperplasia. Connexin43 (Cx43) expression levels may be altered in intimal hyperplasia, and we therefore evaluated the regulated expression of Cx43 in human saphenous veins in culture in the presence or not of fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity. METHODS: Segments of harvested human saphenous veins, obtained at the time of bypass graft, were opened longitudinally with the luminal surface uppermost and maintained in culture for 14 days. Vein fragments were then processed for histologic examination, neointimal thickness measurements, immunocytochemistry, RNA, and proteins analysis. RESULTS: Of the four connexins (Cx37, 40, 43, and 45), we focused on Cx43 and Cx40, which we found by real-time polymerase chain reaction to be expressed in the saphenous vein because they are the predominant connexins expressed by smooth muscle cells and endothelial cells. After 14 days of culture, histomorphometric analysis showed a significant increase in the intimal thickness as observed during the process of intimal hyperplasia. A time-course analysis revealed a progressive upregulation of Cx43 to reach a maximal increase of sixfold to eightfold at both transcript and protein levels after 14 days in culture. In contrast, the expression of Cx40, abundantly expressed in the endothelial cells, was not altered. Immunofluorescence showed a large increase in Cx43 within smooth muscle cell membranes of the media layer. The development of intimal hyperplasia in vitro was decreased in presence of fluvastatin and was associated with reduced Cx43 expression. CONCLUSIONS: These data show that Cx43 is increased in vitro during the process of intimal hyperplasia and that fluvastatin could prevent this induction, supporting a critical role for Cx43-mediated gap-junctional communication in the human vein during the development of intimal hyperplasia. CLINICAL RELEVANCE: Stenosis due to intimal hyperplasia is the most common cause of failure of venous bypass grafts. To better understand the development of intimal hyperplasia, we used an ex vivo organ culture model to study saphenous veins harvested from patients undergoing a lower limb bypass surgery. In this model, the morphologic and functional integrity of the vessel wall is maintained and significant intimal hyperplasia development occurs after 14 days in culture. We have postulated that gap junctions, which coordinate physiologic processes such as cell growth and differentiation, may participate in the development of intimal hyperplasia. Indeed, intimal hyperplasia consists of proliferation and migration of smooth muscle cells into the subendothelial space. Intercellular communication is responsible for the direct transfer of ions and small molecules from one cell to the other through gap-junction channels found at cell-cell appositions. No study to date has evaluated whether gap junctional communication is involved in the process of intimal hyperplasia in humans. This assertion was investigated by using the aforementioned organ culture model of intimal hyperplasia in human saphenous veins, and our data support a critical role for Cx43-mediated gap junctional communication in human vein during the development of intimal hyperplasia.