955 resultados para Vascular prosthesis
Resumo:
Vascular grafts are used to bypass damaged or diseased blood vessels. Bacterial cellulose (BC) has been studied for use as an off-the-shelf graft. Herein, we present a novel, cost-effective, method for the production of small caliber BC grafts with minimal processing or requirements. The morphology of the graft wall produced a tensile strength above that of native vessels, performing similarly to the current commercial alternatives. As a result of the production method, the luminal surface of the graft presents similar topography to that of native vessels. We have also studied the in vivo behavior of these BC graft in order to further demonstrate their viability. In these preliminary studies, 1 month patency was achieved, with the presence of neo-vessels and endothelial cells on the luminal surface of the graft.
Resumo:
Critical lower limb ischemia is a severe disease. A common approach is infrainguinal bypass. Synthetic vascular prosthesis, are good conduits in high-flow low-resistance conditions but have difficulty in their performance as small diameter vessel grafts. A new approach is the use of native decellularized vascular tissues. Cell-free vessels are expected to have improved biocompatibility when compared to synthetic and are optimal natural 3D matrix templates for driving stem cell growth and tissue assembly in vivo. Decellularization of tissues represent a promising field for regenerative medicine, with the aim to develop a methodology to obtain small-diameter allografts to be used as a natural scaffold suited for in vivo cell growth and pseudo-tissue assembly, eliminating failure caused from immune response activation. Material and methods. Umbilical cord-derived mesenchymal cells isolated from human umbilical cord tissue were expanded in advanced DMEM. Immunofluorescence and molecular characterization revealed a stem cell profile. A non-enzymatic protocol, that associate hypotonic shock and low-concentration ionic detergent, was used to decellularize vessel segments. Cells were seeded cell-free scaffolds using a compound of fibrin and thrombin and incubated in DMEM, after 4 days of static culture they were placed for 2 weeks in a flow-bioreactor, mimicking the cardiovascular pulsatile flow. After dynamic culture, samples were processed for histological, biochemical and ultrastructural analysis. Discussion. Histology showed that the dynamic culture cells initiate to penetrate the extracellular matrix scaffold and to produce components of the ECM, as collagen fibres. Sirius Red staining showed layers of immature collagen type III and ultrastructural analysis revealed 30 nm thick collagen fibres, presumably corresponding to the immature collagen. These data confirm the ability of cord-derived cells to adhere and penetrate a natural decellularized tissue and to start to assembly into new tissue. This achievement makes natural 3D matrix templates prospectively valuable candidates for clinical bypass procedures
Resumo:
Seromas occurring around a vascular graft are a rare complication. We report a life-threatening plasma leakage that occurred through the polytetrafluoroethylene vascular prosthesis of an Impella right ventricular assist device (Impella RD [Impella Cardiosystems GmbH, Aachen, Germany]) implanted in a 62-year-old patient with acute right ventricular failure after cardiac transplantation. The leakage became progressively massive. Weaning the patient from the right ventricular assist device was not possible. The prosthesis was thus wrapped within a pericardial patch to contain the leakage. Three days later the patient could be successfully weaned and the pump was removed. The clinical evolution was favorable.
Resumo:
The functional and structural performance of a 5 cm synthetic small diameter vascular graft (SDVG) produced by the copolymerization of polyvinyl alcohol hydrogel with low molecular weight dextran (PVA/Dx graft) associated to mesenchymal stem cells (MSCs)-based therapies and anticoagulant treatment with heparin, clopidogrel and warfarin was tested using the ovine model during the healing period of 24 weeks. The results were compared to the ones obtained with standard expanded polyetetrafluoroethylene grafts (ePTFE graft). Blood flow, vessel and graft diameter measurements, graft appearance and patency rate (PR), thrombus, stenosis and collateral vessel formation were evaluated by B-mode ultrasound, audio and color flow Doppler. Graft and regenerated vessels morphologic evaluation was performed by scanning electronic microscopy (SEM), histopathological and immunohistochemical analysis. All PVA/Dx grafts could maintain a similar or higher PR and systolic / diastolic laminar blood flow velocities were similar to ePTFE grafts. CD14 (macrophages) and α-actin (smooth muscle) staining presented similar results in PVA/Dx/MSCs and ePTFE graft groups. Fibrosis layer was lower and endothelial cells were only detected at graft-artery transitions where it was added the MSCs. In conclusion, PVA/Dx graft can be an excellent scaffold candidate for vascular reconstruction, including clinic mechanically challenging applications, such as SDVGs, especially when associated to MSCs-based therapies to promote higher endothelialization and lower fibrosis of the vascular prosthesis, but also higher PR values.
Resumo:
Objective To evaluate the association of conventional angiography (AG) with computed tomography angiography (CTA) as compared with CTA only, preoperatively, in the treatment of aortic diseases. Materials and Methods Retrospective study involving patients submitted to endovascular treatment of aortic diseases, in the period from January 2009 to July 2010, with use of preoperative CTA + conventional AG or CTA only. The patients were divided into two groups, namely: G1 – thoracic aortic diseases; and G2 – abdominal aortic diseases. G1 was subdivided into 1A (preoperative AG + CTA) and 1B (preoperative CTA). G2 was subdivided into 2C (CTA + AG) and 2D (CTA only). Results The authors evaluated 156 patients. In subgroups 1A and 1B, the rate of technical success was, respectively, 100% and 94.7% (p = 1.0); and the rate of therapeutic success was, respectively, 81% and 58% (p = 0.13). A higher number of complications were observed in subgroup 1B (p = 0.057). The accuracy in the calculation of the prosthesis was higher in subgroup 1A (p = 0.065). In their turn, the rate of technical success in subgroups 2C and 2D was, respectively, 92.3% and 98.6% (p = 0.17). The rate of therapeutic success was 73% and 98.6% (p = 0.79). Conclusion Preoperative conventional AG should be reserved for cases where CTA cannot provide all the information in the planning of a therapeutic intervention.
Resumo:
A migração da endoprótese é complicação do tratamento endovascular definida como deslocamento da ancoragem inicial. Para avaliação da migração, verifica-se a posição da endoprótese em relação a determinada região anatômica. Considerando o aneurisma da aorta abdominal infrarrenal, a área proximal de referência consiste na origem da artéria renal mais baixa e, na região distal, situa-se nas artérias ilíacas internas. Os pacientes deverão ser monitorizados por longos períodos, a fim de serem identificadas migrações, visto que estas ocorrem normalmente após 2 anos de implante. Para evitar migrações, forças mecânicas que propiciam fixação, determinadas por características dos dispositivos e incorporação da endoprótese, devem predominar sobre forças gravitacionais e hemodinâmicas que tendem a arrastar a prótese no sentido caudal. Angulação, extensão e diâmetro do colo, além da medida transversa do saco aneurismático, são importantes aspectos morfológicos do aneurisma relacionados à migração. Com relação à técnica, não se recomenda implante de endopróteses com sobredimensionamento excessivo (> 30%), por provocar dilatação do colo do aneurisma, além de dobras e vazamentos proximais que também contribuem para a migração. Por outro lado, endopróteses com mecanismos adicionais de fixação (ganchos, farpas e fixação suprarrenal) parecem apresentar menos migrações. O processo de incorporação das endopróteses ocorre parcialmente e parece não ser suficiente para impedir migrações tardias. Nesse sentido, estudos experimentais com endopróteses de maior porosidade e uso de substâncias que permitam maior fibroplasia e aderência da prótese à artéria vêm sendo realizados e parecem ser promissores. Esses aspectos serão discutidos nesta revisão.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
The closing sounds of mechanical heart valves can be disturbing for patients and their closest relatives. Although some investigations into mechanical heart valve sounds have been performed, the particularities of the valve sound when it is attached to a vascular prosthesis to replace the aortic root and the ascending aorta has not been studied to date. The study aim was to compare the closing sounds of three various mechanical composite graft prostheses, and to analyze the impact of such sounds on the patients' quality of life.
Resumo:
BACKGROUND: Bioresorbable vascular scaffolds (BVS) were recently approved for percutaneous coronary intervention in Europe. The aim of this position statement is to review the information and studies on available BVS, to stimulate discussion on their use and to propose guidelines for this treatment option in Portugal. METHODS AND RESULTS: A working group was set up to reach a consensus based on current evidence, discussion of clinical case models and individual experience. The evidence suggests that currently available BVS can produce physiological and clinical improvements in selected patients. There are encouraging data on their durability and long-term safety. Initial indications were grouped into three categories: (a) consensual and appropriate - young patients, diabetic patients, left anterior descending artery, long lesions, diffuse disease, and hybrid strategy; (b) less consensual but possible - small collateral branches, stabilized acute coronary syndromes; and (c) inappropriate - left main disease, tortuosity, severe calcification. CONCLUSION: BVS are a viable treatment option based on the encouraging evidence of their applicability and physiological and clinical results. They should be used in appropriate indications and will require technical adaptations. Outcome monitoring and evaluation is essential to avoid inappropriate use. It is recommended that medical societies produce clinical guidelines based on high-quality registries as soon as possible.
Resumo:
Pseudo-Kaposi sarcoma is a benign reactive vascular proliferation mainly involving the lower legs, which can be related to acquired chronic venous insufficiency or congenital arteriovenous malformations. In its most common presentation, acroangiodermatitis is seen in patients with chronic venous insufficiency of the lower limbs as an exaggeration of the stasis dermatitis. However, rare reports of acroangiodermatitis include descriptions in amputees (especially in those with poorly fitting suction-type devices), in patients undergoing hemodialysis (with lesions developing distally to arteriovenous shunts) and in patients with paralyzed legs. We report on a 28 year-old-male who presented pseudo-Kaposi's sarcoma in an amputation stump because of suction-socket lower limb prosthesis.
Resumo:
BACKGROUND: Clinical small-caliber vascular prostheses are unsatisfactory. Reasons for failure are early thrombosis and late intimal hyperplasia. We thus prepared biodegradable small-caliber vascular prostheses using electrospun polycaprolactone (PCL) with slow-releasing paclitaxel (PTX), an antiproliferative drug. METHODS AND RESULTS: PCL solutions containing PTX were used to prepare nonwoven nanofibre-based 2-mm ID prostheses. Mechanical morphological properties and drug loading, distribution, and release were studied in vitro. Infrarenal abdominal aortic replacement was carried out with nondrug-loaded and drug-loaded prostheses in 18 rats and followed for 6 months. Patency, stenosis, tissue reaction, and drug effect on endothelialization, vascular remodeling, and neointima formation were studied in vivo. In vitro prostheses showed controlled morphology mimicking extracellular matrix with mechanical properties similar to those of native vessels. PTX-loaded grafts with suitable mechanical properties and controlled drug-release were obtained by factorial design. In vivo, both groups showed 100% patency, no stenosis, and no aneurysmal dilatation. Endothelial coverage and cell ingrowth were significantly reduced at 3 weeks and delayed at 12 and 24 weeks in PTX grafts, but as envisioned, neointima formation was significantly reduced in these grafts at 12 weeks and delayed at 6 months. CONCLUSIONS: Biodegradable, electrospun, nanofibre, polycaprolactone prostheses are promising because in vitro they maintain their mechanical properties (regardless of PTX loading), and in vivo show good patency, reendothelialize, and remodel with autologous cells. PTX loading delays endothelialization and cellular ingrowth. Conversely, it reduces neointima formation until the end point of our study and thus may be an interesting option for small caliber vascular grafts.
Resumo:
Objective: The vascular access steal syndrome is a complication occurring in 1-6% after native arterio-venous (AV) fistulas, often due to huge diameter of the vein. This results in very high flow, which could also be responsible for cardiac overload. The aim of this study is to evaluate the efficiency of a new approach in the treatment of this pathology using open-pore external scaffolding prosthesis.Methods: This a retrospective review of all patients presenting symptomatic high flow after native AV fistula between January 2007 and December 2009 in 3 vascular centers. Pre-operative duplex exam confirmed the diagnosis of high flow. The operation consisted in preparation of the whole fistula, measurement of the flow and section on the venous side. The vein was wrapped with this 6 to 8 mm open-pore external scaffolding prosthesis (ProVena, BBraun, Germany) according to its diameter and to the flow and then sutured. Measurement of the flow was repeated. Patients were followed by duplex exam at 1 week and at 1, 3, 6 and 12 months. Procedural success was defined as complete implantation of the prosthesis and reduction of the flow. Primary outcomes were reduction of the flow and recovery of the symptoms and secondary endpoint was patency of the fistula.Results: During the study period, 14 patients, with a mean age of 65・8 years old, have been operated with this technique.There were 2 native forearmfistulas and 12 on the armwith a mean pre-operative flow of 2600 ml/min (1800-3800). The mode of presentation was pain in 6 patients, neurological disorders in 10 and necrosis in 4. Moreover, 3 patients had cardiac insufficiency due to high flow in the fistula. The procedure was technically successful in 100% of cases. Re-intervention was necessary in 2 patients due to hematoma. Recovery of the initial symptoms occurred in 13 patients (93%). The mean flow reduction was 1200 ml/min (600-2000). In 1 patient, a persistent steal syndrome despite flow reduction to 1400 ml/min resulted in fistula closure 2 months later. At a mean follow-up of 22 months (4-35), all remaining patients (13/14) presented a patent fistula without recurrence.Conclusion: This new approach seems to be safe and effective in the treatment of symptomatic high flow native AV fistulas by significantly reducing the flow and avoiding closure of the vascular access. Longer follow-up with more patients are necessary to evaluate the risk of recurrence.
Resumo:
OBJECTIVES: We report a new salvage technique for treating venous aneurysms (VAs) complicating vascular access arteriovenous fistula (AVF) using externally reinforced venous aneurysmorrhaphy. DESIGN: A retrospective study over a 20-month period from a single centre. PATIENTS: Patients presenting to the vascular surgery department, Bordeaux University Hospital for revision of a vascular access AVF were included. METHODS: Reinforced venous aneurysmorrhaphy consisted in removal of redundant vessel wall followed by reinforcement using an external prosthetic graft. Patency, diameter and flow were assessed by duplex ultrasound at 1, 6 and 12 months after salvage. RESULTS: Thirty-eight eligible patients were identified. Five were excluded because VA was associated with central vein stenosis; the remaining 33 underwent salvage. Indications were rapidly expanding or painful VA in seven cases; VA with frequent bleeding or damaged overlying skin in eight; VA in close relation to a stenosis in two; and VA associated with high-flow rate in 16. Cannulation was attempted after 30 days. Mean follow-up time was 12 S.D. 5 months (range: 4-22). Two repaired AVFs failed. Primary 1-year patency was 93%. No aneurysm or infection occurred. Reduction of high flow was successful in 12 of 16 patients. The remaining four required re-operation. CONCLUSIONS: Reinforced venous aneurysmorrhaphy is effective in controlling venous dilation and achieving patency. Reduction of high-flow rates was not always achieved. Further study is needed to evaluate long-term efficacy of this treatment.
Resumo:
Coronary and peripheral artery bypass grafting is commonly used to relieve the symptoms of vascular deficiencies, but the Supply Of autologous artery or vein may not be sufficient or suitable for multiple bypass or repeat procedures, necessitating the use of other materials. Synthetic materials are suitable for large bore arteries but often thrombose when used in smaller arteries. Suitable replacement grafts must have appropriate characteristics, including resistance to infection, low immunogenicity and good biocompatability and thromboresistance, with appropriate mechanical and physiological properties and cheap and fast manufacture. Current avenues of graft development include coating synthetic grafts with either biological chemicals or cells with anticoagulatory properties. Matrix templates or acellular tubes of extracellular matrix (such as collagen) may be coated or infiltrated with cultured cells. Once placed into the artery, these grafts may become colonised by host cells and gain many of the properties of normal artery. Tissue-engineered blood vessels may also be formed from layers of human vascular cells grown in culture. These engineered vessels have many of the characteristics of arteries formed in vivo. Artificial arteries may be also be derived from peritoneal granulation tissue in body bioreactors by adapting the body's natural wound healing response to produce a hollow tube. (C) 2003 Elsevier Inc. All rights reserved.