947 resultados para Vascular mechanics
Resumo:
Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca 2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via &agr;-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 ± μM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.
Resumo:
Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via α-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 µM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.
Resumo:
This paper provides insights into liquid free water dynamics in wood vessels based on Lattice Boltzmann experiments. The anatomy of real wood samples was reconstructed from systematic 3-D analyses of the vessel contours derived from successive microscopic images. This virtual vascular system was then used to supply fluid-solid boundary conditions to a two-phase Lattice Boltzmann scheme and investigate capillary invasion of this hydrophilic porous medium. Behavior of the liquid phase was strongly dependent on anatomical features, especially vessel bifurcations and reconnections. Various parameters were examined in numerical experiments with ideal vessel bifurcations, to clarify our interpretation of these features. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study was undertaken to test whether the structural remodelling of pulmonary parenchyma can be sequentially altered in a model and method that demonstrate the progression of the disease and result in remodelling within the lungs that is typical of idiopathic pulmonary fibrosis. Three groups of mice were studied: (i) animals that received 3-5-di-tert-butyl-4-hydroxytoluene (BHT) and were killed after 2 weeks (early BHT = 9); (ii) animals that received BHT and were killed after 4 weeks (late BHT = 11); (iii) animals that received corn oil solution (control = 10). The mice were placed in a ventilated Plexiglas chamber with a mixture of pure humidified oxygen and compressed air. Lung histological sections underwent haematoxylin-eosin, immunohistochemistry (epithelial, endothelial and immune cells) and specific staining (collagen/elastic fibres) methods for morphometric analysis. When compared with the control group, early BHT and late BHT groups showed significant decrease of type II pneumocytes, lower vascular density in both and higher endothelial activity. CD4 was increased in late BHT compared with early and control groups, while CD8, macrophage and neutrophil cells were more prominent only in early BHT. The collagenous fibre density were significantly higher only in late BHT, whereas elastic fibre content in late BHT was lower than that in control group. We conclude that the BHT experimental model is pathologically very similar to human usual interstitial pneumonia. This feature is important in the identification of animal models of idiopathic pulmonary fibrosis that can accurately reflect the pathogenesis and progression of the human disease.
Resumo:
The authors investigated the effect of manual hyperinflation (MHI) with set parameters applied to patients on mechanical ventilation on hemodynamics, respiratory mechanics, and gas exchange. Sixteen critically ill patients post-septic shock, with acute lung injury, were studied. Heart rate, arterial pressure, and mean pulmonary artery pressure were recorded every minute. pulmonary artery occlusion pressure, cardiac output, arterial blood gases, and dynamic compliance (C-dyn) were recorded pre- and post-MHI. From this, systemic vascular resistance index (SVRI), cardiac index, oxygen delivery, and partial pressure of oxygen:fraction of inspired oxygen (PaO2:FiO(2)) ratio were calculated. There were significant increases in SVRI (P < 0.05) post-MHI and diastolic arterial pressure (P < 0.01)during MHI. C-dyn increased post-MHI (P < 0.01) and was sustained at 20 minutes post-MHI (P < 0.01). Subjects with an intrapulmonary cause of lung disease had a significant decrease (P = 0.02) in PaO2:FiO(2), and those with extrapulmonary causes of lung disease had a significant increase (P < 0.001) in PaO2:FiO(2) post-MHI. In critically ill patients, MHI resulted in an improvement in lung mechanics and an improvement in gas exchange in patients with lung disease due to extrapulmonary events and did not result in impairment of the cardiovascular system.
Resumo:
When blood flows through small vessels, the two-phase nature of blood as a suspension of red cells (erythrocytes) in plasma cannot be neglected, and with decreasing vessel size, a homogeneous continuum model become less adequate in describing blood flow. Following the Haynes’ marginal zone theory, and viewing the flow as the result of concentric laminae of fluid moving axially, the present work provides models for fluid flow in dichotomous branching composed by larger and smaller vessels, respectively. Expressions for the branching sizes of parent and daughter vessels, that provides easier flow access, are obtained by means of a constrained optimization approach using the Lagrange multipliers. This study shows that when blood behaves as a Newtonian fluid, Hess – Murray law that states that the daughters-to-parent diameter ratio must equal to 2^(-1/3) is valid. However, when the nature of blood as a suspension becomes important, the expression for optimum branching diameters of vessels is dependent on the separation phase lengths. It is also shown that the same effect occurs for the relative lengths of daughters and parent vessels. For smaller vessels (e. g., arterioles and capillaries), it is found that the daughters-to-parent diameter ratio may varies from 0,741 to 0,849, and the daughters-to-parent length ratio varies from 0,260 to 2,42. For larger vessels (e. g., arteries), the daughters-to-parent diameter ratio and the daughters-to-parent length ratio range from 0,458 to 0,819, and from 0,100 to 6,27, respectively. In this paper, it is also demonstrated that the entropy generated when blood behaves as a single phase fluid (i. e., continuum viscous fluid) is greater than the entropy generated when the nature of blood as a suspension becomes important. Another important finding is that the manifestation of the particulate nature of blood in small vessels reduces entropy generation due to fluid friction, thereby maintaining the flow through dichotomous branching vessels at a relatively lower cost.
Resumo:
Although cartilaginous tumors have low microvascular density, vessels are important for the provision of nutrition so that the tumor can grow and generate metastasis. The aim of this study was to assess the value of the vascular pattern classification as a prognostic tool in chondrosarcomas (CSs) and its relation with vascular endothelial growth factor (VEGF) expression. This was a retrospective study of 21 enchondromas and 57 conventional CSs. Clinical data and outcome were retrieved from medical files. CSs histologic grades (on a scale of 1 to 3) were determined according to the World Health Organization classification. The vascular pattern (on a scale of A to C) was assessed through CD34, according to Kalinski. CD105 and VEGF were also evaluated. Poor outcome was significantly associated with vascular pattern groups B and C. Higher vascular pattern were 6.5 times more frequent in moderate-grade and high-grade CSs than in grade 1 CS. On multivariate analysis, a clear correlation was found between VEGF overexpression and B/C vascular patterns. Only 18 (benign and malignant) tumors stained for CD105. The results point to the use of the vascular pattern classification as a prognostic tool in CSs and to differentiate low-grade from moderate-grade/high-grade CSs. Vascular pattern might be also used to complement histologic grade, VEGF immunostaining, and microvascular density, for indicating a patient's prognosis. Low-grade CSs develop under low neoangiogenesis, which conforms to the slow growth rate of these tumors.
Resumo:
Pitavastatin is the newest statin available in Brazil and likely the one with fewer side effects. Thus, pitavastatin was evaluated in hypercholesterolemic rabbits in relation to its action on vascular reactivity. To assess the lowest dose of pitavastatin necessary to reduce plasma lipids, cholesterol and tissue lipid peroxidation, as well as endothelial function in hypercholesterolemic rabbits. Thirty rabbits divided into six groups (n = 5): G1 - standard chow diet; G2 - hypercholesterolemic diet for 30 days; G3 - hypercholesterolemic diet and after the 16th day, diet supplemented with pitavastatin (0.1 mg); G4 - hypercholesterolemic diet supplemented with pitavastatin (0.25 mg); G5 - hypercholesterolemic diet supplemented with pitavastatin (0.5 mg); G6 - hypercholesterolemic diet supplemented with pitavastatin (1.0 mg). After 30 days, total cholesterol, HDL, triglycerides, glucose, creatine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT) were measured and LDL was calculated. In-depth anesthesia was performed with sodium thiopental and aortic segments were removed to study endothelial function, cholesterol and tissue lipid peroxidation. The significance level for statistical tests was 5%. Total cholesterol and LDL were significantly elevated in relation to G1. HDL was significantly reduced in G4, G5 and G6 when compared to G2. Triglycerides, CK, AST, ALT, cholesterol and tissue lipid peroxidation showed no statistical difference between G2 and G3-G6. Significantly endothelial dysfunction reversion was observed in G5 and G6 when compared to G2. Pitavastatin starting at a 0.5 mg dose was effective in reverting endothelial dysfunction in hypercholesterolemic rabbits.
Resumo:
Phoneutria nigriventer spider accidental envenomation provokes neurotoxic manifestations, which when critical, results in epileptic-like episodes. In rats, P. nigriventer venom (PNV) causes blood-brain barrier breakdown (BBBb). The PNV-induced excitotoxicity results from disturbances on Na(+), K(+) and Ca(2+) channels and glutamate handling. The vascular endothelial growth factor (VEGF), beyond its angiogenic effect, also, interferes on synaptic physiology by affecting the same ion channels and protects neurons from excitotoxicity. However, it is unknown whether VEGF expression is altered following PNV envenomation. We found that adult and neonates rats injected with PNV showed immediate neurotoxic manifestations which paralleled with endothelial occludin, β-catenin, and laminin downregulation indicative of BBBb. In neonate rats, VEGF, VEGF mRNA, and Flt-1 receptors, glutamate decarboxylase, and calbindin-D28k increased in Purkinje neurons, while, in adult rats, the BBBb paralleled with VEGF mRNA, Flk-1, and calbindin-D28k increases and Flt-1 decreases. Statistically, the variable age had a role in such differences, which might be due to age-related unequal maturation of blood-brain barrier (BBB) and thus differential cross-signaling among components of the glial neurovascular unit. The concurrent increases in the VEGF/Flt-1/Flk-1 system in the cerebellar neuron cells and the BBBb following PNV exposure might imply a cytokine modulation of neuronal excitability consequent to homeostatic perturbations induced by ion channels-acting PNV neuropeptides. Whether such modulation represents neuroprotection needs further investigation.
Resumo:
Background: Ruthenium (Ru) tetraamines are being increasingly used as nitric oxide (NO) carriers. In this context, pharmacological studies have become highly relevant to better understand the mechanism of action involved. Objective: To evaluate the vascular response of the tetraamines trans-[RuII(NH3)4(Py)(NO)]3+, trans-[RuII(Cl)(NO) (cyclan)](PF6)2, and trans-[RuII(NH3)4(4-acPy)(NO)]3+. Methods: Aortic rings were contracted with noradrenaline (10-6 M). After voltage stabilization, a single concentration (10-6 M) of the compounds was added to the assay medium. The responses were recorded during 120 min. Vascular integrity was assessed functionally using acetylcholine at 10-6 M and sodium nitroprusside at 10-6 M as well as by histological examination. Results: Histological analysis confirmed the presence or absence of endothelial cells in those tissues. All tetraamine complexes altered the contractile response induced by norepinephrine, resulting in increased tone followed by relaxation. In rings with endothelium, the inhibition of endothelial NO caused a reduction of the contractile effect caused by pyridine NO. No significant responses were observed in rings with endothelium after treatment with cyclan NO. In contrast, in rings without endothelium, the inhibition of guanylate cyclase significantly reduced the contractile response caused by the pyridine NO and cyclan NO complexes, and both complexes caused a relaxing effect. Conclusion: The results indicate that the vascular effect of the evaluated complexes involved a decrease in the vascular tone induced by norepinephrine (10-6 M) at the end of the incubation period in aortic rings with and without endothelium, indicating the slow release of NO from these complexes and suggesting that the ligands promoted chemical stability to the molecule. Moreover, we demonstrated that the association of Ru with NO is more stable when the ligands pyridine and cyclan are used in the formulation of the compound.Fundamento: As tetra-aminas de rutênio cada vez mais se destacam como carreadoras da molécula de óxido nítrico. Desse modo, estudos farmacológicos tornam-se altamente relevantes, afim de melhor compreender o mecanismo de ação envolvido. Objetivo: Avaliar a resposta vascular das tetra-aminas trans-[RuII(NH3)4(Py)(NO)]3+, trans-[RuII(Cl)(NO)(Cyclan)](PF6)2 e trans-[RuII(NH3)4(4-acPy)(NO)]3+. Métodos: Anéis de aorta foram pré-contraídos com noradrenalina (10-6M). Após estabilização da tensão, concentração única (10-6M) dos compostos foi adicionada ao banho de incubação. As respostas foram registradas ao longo de 120 minutos. A integridade vascular foi avaliada funcionalmente (acetilcolina 10-6M; nitroprussiato de sódio 10-6M) e histologicamente Resultados: A análise histológica confirmou a presença ou não de células endoteliais nos tecidos analisados. Todos os complexos alteraram a resposta contrátil induzida pela noradrenalina, resultando em aumento de tônus seguido de efeito relaxante. Em anéis com endotélio, a inibição do óxido nítrico endotelial causou redução do efeito contrátil da piridina óxido nítrico. Não foram observadas respostas significativas em anéis com endotélio referente ao composto cyclan óxido nítrico. Por outro lado, em anéis sem endotélio, a inibição da guanilato ciclase reduziu significativamente a resposta contrátil dos complexos piridina óxido nítrico e cyclan óxido nítrico, levando ambos os compostos a um efeito relaxante. Conclusão: Os resultados obtidos demonstram que o efeito vascular dos complexos avaliados apresentaram diminuição no tônus vascular induzido pela noradrenalina (10-6M) ao final do tempo de incubação, em anéis com e sem endotélio, indicando liberação lenta da molécula de óxido nítrico do composto estudado e sugerindo que os ligantes causaram estabilidade química à molécula. Demonstramos que a ligação rutênio óxido nítrico é mais estável quando utilizamos os ligantes piridina e cyclan para a formulação do composto.
Resumo:
Squamous cell carcinoma is the most common neoplasm of the larynx, and its evolution depends on tumor staging. Vascular endothelial growth factor is a marker of angiogenesis, and its expression may be related to increased tumor aggressiveness, as evidenced by the presence of cervical lymphatic metastases. To evaluate the expression of the vascular endothelial growth factor marker in non-glottic advanced squamous cell carcinoma of the larynx (T3/T4) and correlate it with the presence of cervical lymph node metastases. Retrospective clinical study and immunohistochemical analysis of vascular endothelial growth factor through the German scale of immunoreactivity in products of non-glottic squamous cell carcinomas. This study analyzed 15 cases of advanced non-glottic laryngeal tumors (T3/T4), four of which exhibited cervical lymphatic metastases. There was no correlation between vascular endothelial growth factor expression and the presence of cervical metastases. Although vascular endothelial growth factor was expressed in a few cases, there was no correlation with the spread of cervical lymph metastases.
Resumo:
125
Resumo:
A sixty-nine year old man suffered a stroke fourteen weeks after the onset of right herpes zoster ophthalmicus (HZO). Hemispheric infarction was documented by a computed tomography which showed a small hypodense zone in the right internal capsula; after contrast there was enhancement of this hypodense area. Cerebral angiography and cerebral-spinal fluid were not done. Despite of a diagnosis of probability the authors report the case and review the literature. A long latency between the HZO and onset of neurological deficit is stressed. New antiviral agents may prevent the ictus.
Resumo:
The authors present the study of four children with arteritis as vascular complication of acute bacterial meningitis. They report pathophysiological mechanisms involved in vascular lesions, and progress in the understanding of these complications.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física