948 resultados para Variational Principle of Hamilton
Resumo:
The Herglotz problem is a generalization of the fundamental problem of the calculus of variations. In this paper, we consider a class of non-differentiable functions, where the dynamics is described by a scale derivative. Necessary conditions are derived to determine the optimal solution for the problem. Some other problems are considered, like transversality conditions, the multi-dimensional case, higher-order derivatives and for several independent variables.
Resumo:
FAPESP, the Sao Paulo State Research Foundation[04/04611-5]
Resumo:
Complex Kohn variational principle is applied to the numerical solution of the fully off-shell Lippmann-Schwinger equation for nucleon-nucleon scattering for various partial waves including the coupled S-3(1), D-3(1), channel. Analytic expressions are obtained for all the integrals in the method for a suitable choice of expansion functions. Calculations with the partial waves S-1(0), P-1(1), D-1(2), and S-3(1)-D-3(1) of the Reid soft core potential show that the method converges faster than other solution schemes not only for the phase shift but also for the off-shell t matrix elements. We also show that it is trivial to modify this variational principle in order to make it suitable for bound-state calculation. The bound-state approach is illustrated for the S-3(1)-D-3(1) channel of the Reid soft-core potential for calculating the deuteron binding, wave function, and the D state asymptotic parameters. (c) 1995 Academic Press, Inc.
Resumo:
It is demonstrated, contrary to various claims, that the phase shifts calculated via variational principles involving the Green function may exhibit anomalous behavior. These anomalies may appear in variational principles for the K matrix (Schwinger variational principle) of potential V, for (K-V) (Kohn-type and Newton variational principles), and other variational principles of higher order (Takatsuka-McKoy variational principle).
Resumo:
The δ-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. Different ways of implementing the principle of minimal sensitivity to the δ-expansion produce in general different results for observables. For illustration we use the Nambu-Jona-Lasinio model for chiral symmetry restoration at finite density and compare results with those obtained with the Hartree-Fock approximation.
Resumo:
In this article, we prove that there exists a maximal set of m Hamilton cycles in K-n,K-n if and only if n/4 < m less than or equal to n/2. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Comment on : Results of two different approaches to closure of subaortic ventricular septal defects in children. [Eur J Cardiothorac Surg. 2014]
Resumo:
Paltridge found reasonable values for the most significant climatic variables through maximizing the material transport part of entropy production by using a simple box model. Here, we analyse Paltridge's box model to obtain the energy and the entropy balance equations separately. Derived expressions for global entropy production, which is a function of the radiation field, and even its material transport component, are shown to be different from those used by Paltridge. Plausible climatic states are found at extrema of these parameters. Feasible results are also obtained by minimizing the radiation part of entropy production, in agreement with one of Planck's results, Finally, globally averaged values of the entropy flux of radiation and material entropy production are obtained for two dynamical extreme cases: an earth with uniform temperature, and an earth in radiative equilibrium at each latitudinal point
Resumo:
The vibrational configuration interaction method used to obtain static vibrational (hyper)polarizabilities is extended to dynamic nonlinear optical properties in the infinite optical frequency approximation. Illustrative calculations are carried out on H2 O and N H3. The former molecule is weakly anharmonic while the latter contains a strongly anharmonic umbrella mode. The effect on vibrational (hyper)polarizabilities due to various truncations of the potential energy and property surfaces involved in the calculation are examined
Resumo:
A variational approach for reliably calculating vibrational linear and nonlinear optical properties of molecules with large electrical and/or mechanical anharmonicity is introduced. This approach utilizes a self-consistent solution of the vibrational Schrödinger equation for the complete field-dependent potential-energy surface and, then, adds higher-level vibrational correlation corrections as desired. An initial application is made to static properties for three molecules of widely varying anharmonicity using the lowest-level vibrational correlation treatment (i.e., vibrational Møller-Plesset perturbation theory). Our results indicate when the conventional Bishop-Kirtman perturbation method can be expected to break down and when high-level vibrational correlation methods are likely to be required. Future improvements and extensions are discussed
Resumo:
The Gross-Neveu model in an S^1 space is analyzed by means of a variational technique: the Gaussian effective potential. By making the proper connection with previous exact results at finite temperature, we show that this technique is able to describe the phase transition occurring in this model. We also make some remarks about the appropriate treatment of Grassmann variables in variational approaches.
Resumo:
The ground-state properties of the 3He-4He mixture are investigated by assuming the wave function to be a product of pair correlations. The antisymmetry of the 3He component is taken into account by Fermi-hypernetted-chain techniques and the results are compared with those obtained from the lowest-order Wu-Feenberg expansion and the boson-boson approximation. A little improvement is found in the 3He maximum solubility. A microscopic theory to calculate 3He static properties such as zero-concentration chemical potential and excess-volume parameter is derived and the results are compared with the experiments.
Resumo:
The evolution of altruism is a fundamental and enduring puzzle in biology. In a seminal paper Hamilton showed that altruism can be selected for when rb - c > 0, where c is the fitness cost to the altruist, b is the fitness benefit to the beneficiary, and r is their genetic relatedness. While many studies have provided qualitative support for Hamilton's rule, quantitative tests have not yet been possible due to the difficulty of quantifying the costs and benefits of helping acts. Here we use a simulated system of foraging robots to experimentally manipulate the costs and benefits of helping and determine the conditions under which altruism evolves. By conducting experimental evolution over hundreds of generations of selection in populations with different c/b ratios, we show that Hamilton's rule always accurately predicts the minimum relatedness necessary for altruism to evolve. This high accuracy is remarkable given the presence of pleiotropic and epistatic effects as well as mutations with strong effects on behavior and fitness (effects not directly taken into account in Hamilton's original 1964 rule). In addition to providing the first quantitative test of Hamilton's rule in a system with a complex mapping between genotype and phenotype, these experiments demonstrate the wide applicability of kin selection theory.