915 resultados para Variable Stability and Control Vehicles.
Resumo:
This chapter presents the real time validation of fixed order robust 112 controller designed for the lateral stabilisation of a micro air vehicle named Sarika2. Digital signal processor (DSP) based onboard computer named flight instrumentation controller (FIC) is designed to operate under automatic or manual mode. FIC gathers data from multitude of sensors and is capable of closed loop control to enable autonomous flight. Fixed order lateral H-2 controller designed with the features such as incorporation of level I flying qualities, gust alleviation and noise rejection is coded on to the FIC. Challenging real time hardware in loop simulation (HILS) is done with dSPACE1104 RTI/RTW. Responses obtained from the HILS are compared with those obtained from the offline simulation. Finally, flight trials are conducted to demonstrate the satisfactory performance of the closed loop system. The generic design methodology developed is applicable to all classes of Mini and Micro air vehicles.
Resumo:
National Highway Traffic Safety Administration, Crash Avoidance Research Division, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Crash Avoidance Research Division, Washington, D.C.
First-interim report on the hydrodynamics and stability and control of a tandem propeller submarine.
Resumo:
"Contract Nonr-3659(00) (FBM)."
Resumo:
v. 1. Methods of predicting structural temperatures due to aerodynamic heating, by A. H. Blessing.--v. 2. Aerodynamics, by J. R Batt.--v. 3. Experimental and analytical methods for the determination of thermally-affected wing deflectional behavior, by R. H. Gallagher.--v. 3. sup. Description and results of tests conducted to determine the thermally affected behavior of corrugated multiweb wing structures, by J. F. Quinn.
Resumo:
pt. 3. Aeroelastic interaction, by V. W. Donato.
Resumo:
"February 1961."
Resumo:
This thesis deals with the analytic study of dynamics of Multi--Rotor Unmanned Aerial Vehicles. It is conceived to give a set of mathematical instruments apt to the theoretical study and design of these flying machines. The entire work is organized in analogy with classical academic texts about airplane flight dynamics. First, the non--linear equations of motion are defined and all the external actions are modeled, with particular attention to rotors aerodynamics. All the equations are provided in a form, and with personal expedients, to be directly exploitable in a simulation environment. This has requited an answer to questions like the trim of such mathematical systems. All the treatment is developed aiming at the description of different multi--rotor configurations. Then, the linearized equations of motion are derived. The computation of the stability and control derivatives of the linear model is carried out. The study of static and dynamic stability characteristics is, thus, addressed, showing the influence of the various geometric and aerodynamic parameters of the machine and in particular of the rotors. All the theoretic results are finally utilized in two interesting cases. One concerns the design of control systems for attitude stabilization. The linear model permits the tuning of linear controllers gains and the non--linear model allows the numerical testing. The other case is the study of the performances of an innovative configuration of quad--rotor aircraft. With the non--linear model the feasibility of maneuvers impossible for a traditional quad--rotor is assessed. The linear model is applied to the controllability analysis of such an aircraft in case of actuator block.
Resumo:
Particle filtering has proven to be an effective localization method for wheeled autonomous vehicles. For a given map, a sensor model, and observations, occasions arise where the vehicle could equally likely be in many locations of the map. Because particle filtering algorithms may generate low confidence pose estimates under these conditions, more robust localization strategies are required to produce reliable pose estimates. This becomes more critical if the state estimate is an integral part of system control. We investigate the use of particle filter estimation techniques on a hovercraft vehicle. The marginally stable dynamics of a hovercraft require reliable state estimates for proper stability and control. We use the Monte Carlo localization method, which implements a particle filter in a recursive state estimate algorithm. An H-infinity controller, designed to accommodate the latency inherent in our state estimation, provides stability and controllability to the hovercraft. In order to eliminate the low confidence estimates produced in certain environments, a multirobot system is designed to introduce mobile environment features. By tracking and controlling the secondary robot, we can position the mobile feature throughout the environment to ensure a high confidence estimate, thus maintaining stability in the system. A laser rangefinder is the sensor the hovercraft uses to track the secondary robot, observe the environment, and facilitate successful localization and stability in motion.
Resumo:
In this paper, the stability of an autonomous microgrid with multiple distributed generators (DG) is studied through eigenvalue analysis. It is assumed that all the DGs are connected through Voltage Source Converter (VSC) and all connected loads are passive. The VSCs are controlled by state feedback controller to achieve desired voltage and current outputs that are decided by a droop controller. The state space models of each of the converters with its associated feedback are derived. These are then connected with the state space models of the droop, network and loads to form a homogeneous model, through which the eigenvalues are evaluated. The system stability is then investigated as a function of the droop controller real and reac-tive power coefficients. These observations are then verified through simulation studies using PSCAD/EMTDC. It will be shown that the simulation results closely agree with stability be-havior predicted by the eigenvalue analysis.
Resumo:
In this paper, we consider the variable-order nonlinear fractional diffusion equation View the MathML source where xRα(x,t) is a generalized Riesz fractional derivative of variable order View the MathML source and the nonlinear reaction term f(u,x,t) satisfies the Lipschitz condition |f(u1,x,t)-f(u2,x,t)|less-than-or-equals, slantL|u1-u2|. A new explicit finite-difference approximation is introduced. The convergence and stability of this approximation are proved. Finally, some numerical examples are provided to show that this method is computationally efficient. The proposed method and techniques are applicable to other variable-order nonlinear fractional differential equations.
Resumo:
This paper investigates the problem of appropriate load sharing in an autonomous microgrid. High gain angle droop control ensures proper load sharing, especially under weak system conditions. However it has a negative impact on overall stability. Frequency domain modeling, eigenvalue analysis and time domain simulations are used to demonstrate this conflict. A supplementary loop is proposed around a conventional droop control of each DG converter to stabilize the system while using high angle droop gains. Control loops are based on local power measurement and modulation of the d-axis voltage reference of each converter. Coordinated design of supplementary control loops for each DG is formulated as a parameter optimization problem and solved using an evolutionary technique. The sup-plementary droop control loop is shown to stabilize the system for a range of operating conditions while ensuring satisfactory load sharing.
Resumo:
This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.
Resumo:
With the increase in the level of global warming, renewable energy based distributed generators (DGs) will increasingly play a dominant role in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cells and micro turbines will gain considerable momentum in the near future. A microgrid consists of clusters of load and distributed generators that operate as a single controllable system. The interconnection of the DG to the utility/grid through power electronic converters has raised concern about safe operation and protection of the equipments. Many innovative control techniques have been used for enhancing the stability of microgrid as for proper load sharing. The most common method is the use of droop characteristics for decentralized load sharing. Parallel converters have been controlled to deliver desired real power (and reactive power) to the system. Local signals are used as feedback to control converters, since in a real system, the distance between the converters may make the inter-communication impractical. The real and reactive power sharing can be achieved by controlling two independent quantities, frequency and fundamental voltage magnitude. In this thesis, an angle droop controller is proposed to share power amongst converter interfaced DGs in a microgrid. As the angle of the output voltage can be changed instantaneously in a voltage source converter (VSC), controlling the angle to control the real power is always beneficial for quick attainment of steady state. Thus in converter based DGs, load sharing can be performed by drooping the converter output voltage magnitude and its angle instead of frequency. The angle control results in much lesser frequency variation compared to that with frequency droop. An enhanced frequency droop controller is proposed for better dynamic response and smooth transition between grid connected and islanded modes of operation. A modular controller structure with modified control loop is proposed for better load sharing between the parallel connected converters in a distributed generation system. Moreover, a method for smooth transition between grid connected and islanded modes is proposed. Power quality enhanced operation of a microgrid in presence of unbalanced and non-linear loads is also addressed in which the DGs act as compensators. The compensator can perform load balancing, harmonic compensation and reactive power control while supplying real power to the grid A frequency and voltage isolation technique between microgrid and utility is proposed by using a back-to-back converter. As utility and microgrid are totally isolated, the voltage or frequency fluctuations in the utility side do not affect the microgrid loads and vice versa. Another advantage of this scheme is that a bidirectional regulated power flow can be achieved by the back-to-back converter structure. For accurate load sharing, the droop gains have to be high, which has the potential of making the system unstable. Therefore the choice of droop gains is often a tradeoff between power sharing and stability. To improve this situation, a supplementary droop controller is proposed. A small signal model of the system is developed, based on which the parameters of the supplementary controller are designed. Two methods are proposed for load sharing in an autonomous microgrid in rural network with high R/X ratio lines. The first method proposes power sharing without any communication between the DGs. The feedback quantities and the gain matrixes are transformed with a transformation matrix based on the line R/X ratio. The second method involves minimal communication among the DGs. The converter output voltage angle reference is modified based on the active and reactive power flow in the line connected at point of common coupling (PCC). It is shown that a more economical and proper power sharing solution is possible with the web based communication of the power flow quantities. All the proposed methods are verified through PSCAD simulations. The converters are modeled with IGBT switches and anti parallel diodes with associated snubber circuits. All the rotating machines are modeled in detail including their dynamics.