915 resultados para Variable Sampling Intervals
Resumo:
Recent studies have shown that the (X) over bar chart with variable sampling intervals (VSI) and/or with variable sample sizes (VSS) detects process shifts faster than the traditional (X) over bar chart. This article extends these studies for processes that are monitored by both the (X) over bar and R charts. A Markov chain model is used to determine the properties of the joint (X) over bar and R charts with variable sample sizes and sampling intervals (VSSI). The VSSI scheme improves the joint (X) over bar and R control chart performance in terms of the speed with which shifts in the process mean and/or variance are detected.
Resumo:
Recent theoretical studies have shown that the X̄ chart with variable sampling intervals (VSI) and the X̄ chart with variable sample size (VSS) are quicker than the traditional X̄ chart in detecting shifts in the process. This article considers the X̄ chart with variable sample size and sampling intervals (VSSI). It is assumed that the amount of time the process remains in control has exponential distribution. The properties of the VSSI X̄ chart are obtained using Markov chains. The VSSI X̄ chart is even quicker than the VSI or VSS X̄ charts in detecting moderate shifts in the process.
Resumo:
Recent studies have shown that the X̄ chart with variable sampling intervals (VSI) and/or with variable sample sizes (VSS) detects process shifts faster than the traditional X̄ chart. This article extends these studies for processes that are monitored by both the X̄ and R charts. A Markov chain model is used to determine the properties of the joint X and R charts with variable sample sizes and sampling intervals (VSSI). The VSSI scheme improves the joint X̄ and R control chart performance in terms of the speed with which shifts in the process mean and/or variance are detected.
Resumo:
The aim of this study was to determine how abiotic factors drive the phytoplankton community in a water supply reservoir within short sampling intervals. Samples were collected at the subsurface (0.1 m) and bottom of limnetic (8 m) and littoral (2 m) zones in both the dry and rainy seasons. The following abiotic variables were analyzed: water temperature, dissolved oxygen, electrical conductivity, total dissolved solids, turbidity, pH, total nitrogen, nitrite, nitrate, total phosphorus, total dissolved phosphorus and orthophosphate. Phytoplankton biomass was determined from biovolume values. The role abiotic variables play in the dynamics of phytoplankton species was determined by means of Canonical Correspondence Analysis. Algae biomass ranged from 1.17×10(4) to 9.21×10(4) µg.L-1; cyanobacteria had biomass values ranging from 1.07×10(4) to 8.21×10(4) µg.L-1. High availability of phosphorous, nitrogen limitation, alkaline pH and thermal stability all favored cyanobacteria blooms, particularly during the dry season. Temperature, pH, total phosphorous and turbidity were key factors in characterizing the phytoplankton community between sampling times and stations. Of the species studied, Cylindrospermopsis raciborskii populations were dominant in the phytoplankton in both the dry and rainy seasons. We conclude that the phytoplankton was strongly influenced by abiotic variables, particularly in relation to seasonal distribution patterns.
Resumo:
O presente estudo avaliou a digestibilidade aparente da proteína e da energia de ingredientes (farelo de soja, farinha de peixe, farelo de trigo e milho) por juvenis de apaiari (Astronotus ocellatus) usando dois diferentes intervalos de coleta (30 min. e 12h). Os 160 juvenis de apaiari utilizados (22,37 ± 3,06 g de peso corporal) foram divididos em quatro tanques rede plásticos e cilíndricos, cada um colocado em um tanque de alimentação de 1.000 L. O experimento foi inteiramente casualizado em esquema fatorial 2 x 4 (2 intervalos de coleta de fezes e 4 ingredientes foram) com quatro repetições. Os testes estatísticos não detectaram efeito da interação entre o intervalo de coleta e tipo de ingrediente nos coeficientes de digestibilidade. O intervalo de coleta não afetou a digestibilidade da proteína e da energia. As características físicas das fezes dos juvenis de apaiari aparentemente as tornam menos sensíveis à perda de nutrientes por lixiviação, permitindo intervalos de coleta maiores. A digestibilidade da proteína dos ingredientes avaliados foi semelhante, mostrando que a digestibilidade aparente de ingredientes animais e vegetais por juvenis de apaiari é eficiente. Os coeficientes de digestibilidade da energia foram maiores para a farinha de peixe e o farelo de soja comparado a farelo de trigo e milho. Ingredientes ricos em carboidratos (farelo de trigo e milho) apresentaram os piores coeficientes de digestibilidade da energia e, portanto, não são usados eficientemente pelos juvenis de apaiari.
Resumo:
This paper presents an economic design of (X) over bar control charts with variable sample sizes, variable sampling intervals, and variable control limits. The sample size n, the sampling interval h, and the control limit coefficient k vary between minimum and maximum values, tightening or relaxing the control. The control is relaxed when an (X) over bar value falls close to the target and is tightened when an (X) over bar value falls far from the target. A cost model is constructed that involves the cost of false alarms, the cost of finding and eliminating the assignable cause, the cost associated with production in an out-of-control state, and the cost of sampling and testing. The assumption of an exponential distribution to describe the length of time the process remains in control allows the application of the Markov chain approach for developing the cost function. A comprehensive study is performed to examine the economic advantages of varying the (X) over bar chart parameters.
Resumo:
We combined the analysis of sediment trap data and satellite-derived sea surface chlorophyll to quantify the amount of organic carbon export to the deep sea in the upwelling induced high production area off northwest Africa. In contrast to the generally global or basin-wide adoption of export models, we used a regionally fitted empirical model. Furthermore, the application of our model was restricted to a dynamically defined region of high chlorophyll concentration in order to restrict the model application to an environment of more homogeneous export processes. We developed a correlation-based approximation to estimate the surface source area for a sediment trap deployed from 11 June 1998 to 7 November 1999 at 21.25°N latitude and 20.64°W longitude off Cape Blanc. We also developed a regression model of chlorophyll and export of organic carbon to the 1000 m depth level. Carbon export was calculated for an area of high chlorophyll concentration (>1 mg/m**3) adjacent to the coast on a daily basis. The resulting zone of high chlorophyll concentration was 20,000-800,000 km**2 large and yielded a yearly export of 1.123 to 2.620 Tg organic carbon. The average organic carbon export within the area of high chlorophyll concentration was 20.6 mg/m**2d comparable to 13.3 mg/m**2d as found in the sediment trap results if normalized to the 1000 m level. We found strong interannual variability in export. The period autumn 1998 to summer 1999 was exceeding the mean of the other three comparable periods by a factor of 2.25. We believe that this approach of using more regionally fitted models can be successfully transferred even to different oceanographic regions by selecting appropriate definition criteria like chlorophyll concentration for the definition of an area to which it is applicable.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A standard (X) over bar chart for controlling the process mean takes samples of size no at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard (X) over bar chart that allows one to take additional samples, bigger than no, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costs (1997) we shortly call the proposed (X) over bar chart as VSSIFT (X) over bar chart: where VSSIFT means variable sample size and sampling intervals with fixed times. The (X) over bar chart with the VSSIFT feature is easier to be administered than a standard VSSI (X) over bar chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable.
Resumo:
A standard X̄ chart for controlling the process mean takes samples of size n0 at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard X chart that allows one to take additional samples, bigger than n0, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costa (1997) we shortly call the proposed X chart as VSSIFT X chart where VSSIFT means variable sample size and sampling intervals with fixed times. The X chart with the VSSIFT feature is easier to be administered than a standard VSSI X chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable. Copyright © 1998 by Marcel Dekker, Inc.
Resumo:
In this paper we propose the Double Sampling X̄ control chart for monitoring processes in which the observations follow a first order autoregressive model. We consider sampling intervals that are sufficiently long to meet the rational subgroup concept. The Double Sampling X̄ chart is substantially more efficient than the Shewhart chart and the Variable Sample Size chart. To study the properties of these charts we derived closed-form expressions for the average run length (ARL) taking into account the within-subgroup correlation. Numerical results show that this correlation has a significant impact on the chart properties.