109 resultados para Vapors.
Resumo:
The viscosities of ternary mixtures of R-12, R-22, and R-114 vapors were determined at ambient temperature and pressure within +-1% by using an oscillating disk viscometer. The empirical viscosity obtained by Wllke's equation compares very well with the experimental results obtained with this vlscometer. In the case of this ternary vapor mixture, as long as the molar fraction ratio of R-12 to R-114 Is maintained at approximately 2"' (=Inverse ratio of thelr molecular weights) the viscosity of the ternary mixture at ambient temperature and pressure remalns constant irrespective of the percentage of R-22 present in the mixture.
Resumo:
Residual viscosity is a unique function of density for pure Freon-12 and Freon-22 vapors. Also, a plot of residual viscosity against density for Freon-12 and Freon-22 vapors exhibits a regular trend. These phenomena form the basis for predicting the viscosity of mixtures of Freon-12 and Freon-22 vapors.
Resumo:
Polypyrrole exhibits reversible changes in their direct current resistance on exposure to organic volatiles. However, one needs to employ an array of such sensors to discriminate organic volatiles present in a mixture. Hence, polypyrrole based gas sensor is designed for the detection and discrimination of different organic volatiles. Multi frequency impedance measurement technique is used to detect the organic vapors, such as acetone, ethanol and Isopropyl alcohol, in the gas phase, over a frequency range 10 Hz to 2 MHz. The sensor response is monitored by measuring the changes in its capacitance, resistance and the dissipation factor upon exposure to organic volatiles. It is observed that the capacitive property of the sensor is more sensitive to these volatiles than its resistive property. Each volatile responds to the sensor in terms of dissipation factor at specific frequency and found that the peak magnitude has a linear relationship with their concentrations.
Resumo:
Field effect transistors (FETs) based on organic materials were investigated as sensors for detecting 2,4,6-trinitrotoluene (TNT) vapors. Several FET devices were fabricated using two types of semiconducting organic materials, solution processed polymers deposited by spin coating and, oligomers (or small molecules) deposited by vacuum sublimation. When vapors of nitroaromatic compounds bind to thin films of organic materials which form the transistor channel, the conductivity of the thin film increases and changes the transistor electrical characteristic. The use of the amplifying properties of the transistor represents a major advantage over conventional techniques based on simple changes of resistance in polymers frequently used in electronic noses.
Resumo:
Modifications of glass surfaces were studied after exposure of samples to an atmosphere resulting from the decomposition of molten KNO3. The diffusion coefficient of K+ ions migrating into the surfaces of float glass and synthesized glasses doped with up to 5 wt% SnO2 was calculated by the Boltzmann-Matano technique. The Vickers hardness and the refractive index increase with exposure time. Infrared spectra show that the migration of K+ is responsible for an increase in the number of non-bridging oxygens in the exposed samples. The spectra of the synthesized glasses present evidences that their surfaces undergo crystallization during the exposure. All results lead to the conclusion that the presence of tin in the glasses hinders the diffusion of K+ ions, thus affecting the Vickers hardness, the refractive index and the infrared spectra. It is shown that the exposure method can be used as an alternative process to promote the K+ migration into glass surfaces. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Bibliography: p. A1-A32.
Resumo:
Includes bibliographical references and indexes.
Resumo:
Mode of access: Internet.
Resumo:
In this paper we analyzed the adsorption of a large number of gases and vapors on graphitized thermal carbon black. The Henry constant was used to determine the adsorbate-adsorbent interaction energy, which is found to be a modest decreasing function of temperature. Analysis of the complete adsorption isotherm over a wider range of pressure yields information on the monolayer coverage concentration and the adsorbate-adsorbate interaction energy. Among the various equations tested, the Hill-de Boer equation accounting for BET-postulated multilayer formation describes well the adsorption isotherms of all adsorbates. On average, the adsorbate-adsorbate interaction energy in the adsorbed phase is less than that in the bulk phase, suggesting that the distance between adsorbed molecules in the first layer of the adsorbed phase is slightly less than the equilibrium distance between two adsorbate molecules in the bulk phase. This suggests that the first layer is in a compressed state, which is due to the attraction of the adsorbent surface. The monolayer concentration as determined from the fitting of the Hill-de Boer equation with experimental data is slightly larger than the values calculated from the molecular projection area, suggesting that molecules can be oriented such that a larger number of molecules can be accommodated on the carbon black surface. This further supports the shorter distance between adsorbate molecules in the adsorbed phase.
Resumo:
As alcohol molecules such as methanol and ethanol have both polar and non-polar groups, their adsorption behavior is governed by the contributions of dispersion interaction (alkyl group) and hydrogen bonding (OH group). In this paper, the adsorption behavior of alcohol molecules and its effect on transport processes are elucidated. From the total permeability (B-T) of alcohol molecules in activated carbon, an adsorption mechanism is proposed, describing well the experimental data, by taking combination effects of clustering, entering micropores, layering and pore filling processes. Unlike the case of non-polar compounds, it was found that at low pressures there are two rises in the BT of alcohol molecules in activated carbon. The first rise is due to the major contribution of surface diffusion to the transport (which is the case of non-polar molecules) and the second one may be associated with cluster formation at the edge of micropores and entering micropores when the clusters are sufficiently large enough to induce a dispersive energy. In addition the clusters formed may enhance surface diffusion at low pressures and hinder gas phase diffusion and flow in meso/macropores. (c) 2006 Elsevier Ltd. All fights reserved.
Resumo:
The paper presents the simulation of the pyrolysis vapors condensation process using an Eulerian approach. The condensable volatiles produced by the fast pyrolysis of biomass in a 100 g/h bubbling fluidized bed reactor are condensed in a water cooled condenser. The vapors enter the condenser at 500 °C, and the water temperature is 15 °C. The properties of the vapor phase are calculated according to the mole fraction of its individual compounds. The saturated vapor pressure is calculated for the vapor mixture using a corresponding states correlation and assuming that the mixture of the condensable compounds behave as a pure fluid. Fluent 6.3 has been used as the simulation platform, while the condensation model has been incorporated to the main code using an external user defined function. © 2011 American Chemical Society.