818 resultados para Valves -- Materials


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les indústries proveïdores de vàlvules de bola han adaptat, durant els últims 25 anys, els seus productes a les necessitats de la indústria química, sobretot plantes petrolíferes, petroquímiques i indústries farmacèutiques. L’estudi de les propietats físico-químiques dels materials, sobretot elastòmers i termoplàstics, i el perfeccionament de les eines per produir boles en sèrie fan possible la fabricació de vàlvules adequades per a una àmplia gama d’aplicacions. La gran majoria de les indústries proveïdores de vàlvules treballen a partir de dissenys i materials estandarditzats. El procés de producció segons necessitats especials definides és llarg i costós. L’enginyer és el responsable d’escollir el disseny i materials òptims per a cadascuna de les peces del producte, tant de metall, elastòmer o termoplàstic. En molts casos es requereix un producte absolutament òptim, amb l’assegurança de la reduïda provabilitat de fallida i de l’adequació total d’acord amb una necessitat concreta. Aquesta demanda de requisits comporta l’estudi exhaustiu del fluid, de la futura localització del producte i de l’ambient al qual estarà sotmès. Per tant, el fet d’estandarditzar i sistematitzar el procés de selecció de vàlvules de bola segons condicions preestablertes és una tasca important i útil per a la indústria del disseny i fabricació vàlvules de bola. L’objectiu d’aquest projecte és la creació d’una eina que sistematitzi i estandarditzi el procés de selecció d’una vàlvula de bola segons condicions preestablertes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nickel-based super alloys are used in a variety of applications in which high-temperature strength and resistance to creep, corrosion, and oxidation are required, such as in aircraft gas turbines, combustion chambers, and automotive engine valves. The properties that make these materials suitable for these applications also make them difficult to grind. Grinding systems for such materials are often built around vitrified cBN (cubic boron nitride) wheels to realize maximum productivity and minimum cost per part. Conditions that yield the most economical combination of stock removal rate and wheel wear are key to the successful implementation of the grinding system. Identifying the transition point for excessive wheel wear is important. The aim of this study is to compare the performance of different cBN wheels when grinding difficult-to-grind (DTG) materials by determining the 'wheel wear characteristic curve', which correlates the G-ratio to the calculated tangential force per abrasive grain. With the proposed methodology, a threshold force per grit above which the wheel wear rate increases rapidly can be quickly identified. A comparison of performance for two abrasive product formulations in the grinding of three materials is presented. The obtained results can be applied for the development of grinding applications for DTG materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prenatal heart valve interventions aiming at the early and systematic correction of congenital cardiac malformations represent a promising treatment option in maternal-fetal care. However, definite fetal valve replacements require growing implants adaptive to fetal and postnatal development. The presented study investigates the fetal implantation of prenatally engineered living autologous cell-based heart valves. Autologous amniotic fluid cells (AFCs) were isolated from pregnant sheep between 122 and 128 days of gestation via transuterine sonographic sampling. Stented trileaflet heart valves were fabricated from biodegradable PGA-P4HB composite matrices (n = 9) and seeded with AFCs in vitro. Within the same intervention, tissue engineered heart valves (TEHVs) and unseeded controls were implanted orthotopically into the pulmonary position using an in-utero closed-heart hybrid approach. The transapical valve deployments were successful in all animals with acute survival of 77.8% of fetuses. TEHV in-vivo functionality was assessed using echocardiography as well as angiography. Fetuses were harvested up to 1 week after implantation representing a birth-relevant gestational age. TEHVs showed in vivo functionality with intact valvular integrity and absence of thrombus formation. The presented approach may serve as an experimental basis for future human prenatal cardiac interventions using fully biodegradable autologous cell-based living materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Chronic venous insufficiency (CVI) represents a major global health problem with increasing prevalence and morbidity. CVI is due to an incompetence of the venous valves, which causes venous reflux and distal venous hypertension. Several studies have focused on the replacement of diseased venous valves using xeno- and allogenic transplants, so far with moderate success due to immunologic and thromboembolic complications. Autologous cell-derived tissue-engineered venous valves (TEVVs) based on fully biodegradable scaffolds could overcome these limitations by providing non-immunogenic, non-thrombogenic constructs with remodeling and growth potential. Methods: Tri- and bicuspid venous valves (n=27) based on polyglycolic acid-poly-4-hydroxybutyrate composite scaffolds, integrated into self-expandable nitinol stents, were engineered from autologous ovine bone-marrow-derived mesenchymal stem cells (BM-MSCs) and endothelialized. After in vitro conditioning in a (flow) pulse duplicator system, the TEVVs were crimped (n=18) and experimentally delivered (n=7). The effects of crimping on the tissue-engineered constructs were investigated using histology, immunohistochemistry, scanning electron microscopy, grating interferometry (GI), and planar fluorescence reflectance imaging. Results: The generated TEVVs showed layered tissue formation with increasing collagen and glycosaminoglycan levels dependent on the duration of in vitro conditioning. After crimping no effects were found on the MSC level in scanning electron microscopy analysis, GI, histology, and extracellular matrix analysis. However, substantial endothelial cell loss was detected after the crimping procedure, which could be reduced by increasing the static conditioning phase. Conclusions: Autologous living small-diameter TEVVs can be successfully fabricated from ovine BM-MSCs using a (flow) pulse duplicator conditioning approach. These constructs hold the potential to overcome the limitations of currently used non-autologous replacement materials and may open new therapeutic concepts for the treatment of CVI in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate lung fissures completeness, post-treatment radiological response and quantitative CT analysis (QCTA) in a population of severe emphysematous patients submitted to endobronchial valves (EBV) implantation. MATERIALS AND METHODS: Multi-detectors CT exams of 29 patients were studied, using thin-section low dose protocol without contrast. Two radiologists retrospectively reviewed all images in consensus; fissures completeness was estimated in 5% increments and post-EBV radiological response (target lobe atelectasis/volume loss) was evaluated. QCTA was performed in pre and post-treatment scans using a fully automated software. RESULTS: CT response was present in 16/29 patients. In the negative CT response group, all 13 patients presented incomplete fissures, and mean oblique fissures completeness was 72.8%, against 88.3% in the other group. QCTA most significant results showed a reduced post-treatment total lung volume (LV) (mean 542 ml), reduced EBV-submitted LV (700 ml) and reduced emphysema volume (331.4 ml) in the positive response group, which also showed improved functional tests. CONCLUSION: EBV benefit is most likely in patients who have complete interlobar fissures and develop lobar atelectasis. In patients with no radiological response we observed a higher prevalence of incomplete fissures and a greater degree of incompleteness. The fully automated QCTA detected the post-treatment alterations, especially in the treated lung analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stainless steels are used to intake and exhaust valves production applied as internal combustion engines. In general valves are requested to support cyclic stresses applied due to opening and closing processes during the operation. The objective of this research is to study the influence on the axial fatigue strength of the resulting microstructure after heat treatment at the martensitic X45CrSi93 steel, combined with different surface treatments as hard chrome-plating, nitride and grinding. It was verified a significant increase on the fatigue strength of the martensitic steel after nitriding, compared with results from the chrome-plating specimens. A slight increase in the tensile strength was also noticed on nitrided parts as a consequence of a resistance increase due to nitrogen and carbon solid solution. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Of the south of Spain, near the province of Cordova, in a tributary of the Guadalquivir River it has been constructed during the years 2004 to 2007 the reservoir called El Arenoso. El Arenoso reservoir that belongs to Environment Ministry is destined to downstream Guadalquivir’s water supply and the general regulation of the river. The dam is located on the same name river and it is next to the Montoro’s municipal district, 41 km northeast of Cordova. The main work consists on an embankment dam, with central clay core, and slates and greywacke shoulders. The core is covered downstream with a filter material and upstream with a transition material. The dimensions of the dam are 80 m high, 1.480 m long at its crest, and it has been needed more than 3 million m3 of materials, creating a waterproof barrier able to keep 160 hm3 as a useful reservoir. In the zone of the core is located the chamber of valves with a horizontal clearance of 10 m and a vertical clearance of 14,517 m. The present article exposes the most important characteristics of project and construction, of valves chamber of the Arenoso reservoir.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The durability of a polymer trileaflet valve is dependent on leaflet stress concentrations, so valve designs that reduce stress can, hypothetically, increase durability. Design aspects that are believed to contribute to reduced leaflet stress include stent flexibility, parabolic coaptation curvature, and leaflet anisotropy. With this in mind, the purpose of this investigation was to elucidate what specific combinations of these parameters promote optimal acute and long-term valve function. A combination of four stent designs, seven leaflet reinforcement materials, and three coaptation geometries were evaluated through a combination of experimentation and modeling. Static tensile and Poisson’s ratio tests and dynamic tensile fatigue testing were used to evaluate the individual leaflet components; and hydrodynamic testing and accelerated valve fatigue was used to assess complete valve prototypes. The two most successful designs included a 0.40 mm thick knit-reinforced valve with a fatigue life of 10.35 years, and a 0.20 mm thick knit-reinforced valve with a 28.9 mmHg decrease in pressure drop over the former. A finite element model was incorporated to verify the impact of the above-mentioned parameters on leaflet stress concentrations. Leaflet anisotropy had a large impact on stress concentrations, and matching the circumferential modulus to that of the natural valve showed the greatest benefit. Varying the radial modulus had minimal impact. Varying coaptation geometry had no impact, but stent flexibility did have a marked effect on the stress at the top of the commissure, where a completely rigid stent resulted in a higher peak stress than a flexible stent (E = 385 MPa). In conclusion, stent flexibility and leaflet anisotropy do effect stress concentrations in the SIBS trileaflet valve, but coaptation geometry does not. Regions of high stress concentrations were linked to failure locations in vitro, so a fatigue prediction model was developed from the S/N curves generated during dynamic tensile testing of the 0.20 mm knit-reinforced leaflets. Failure was predicted at approximately 400 million cycles (10 years) at the top of the commissure. In vitro fatigue of this valve showed failure initiation after approximately 167 million cycles (4.18 years), but it was related to a design defect that is subsequently being changed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel trileaflet polymer valve is a composite design of a biostable polymer poly(styrene-isobutylene-styrene) (SIBS) with a reinforcement polyethylene terephthalate (PET) fabric. Surface roughness and hydrophilicity vary with fabrication methods and influence leaflet biocompatibility. The purpose of this study was to investigate the biocompatibility of this composite material using both small animal (nonfunctional mode) and large animal (functional mode) models. Composite samples were manufactured using dip coating and solvent casting with different coating thickness (251μm and 50μm). Sample's surface was characterized through qualitative SEM observation and quantitative surface roughness analysis. A novel rat abdominal aorta model was developed to test the composite samples in a similar pulsatile flow condition as its intended use. The sample's tissue response was characterized by histological examination. Among the samples tested, the 25μm solvent-cast sample exhibited the smoothest surface and best biocompatibility in terms of tissue capsulation thickness, and was chosen as the method for fabrication of the SIBS valve. Phosphocholine was used to create a hydrophilic surface on selected composite samples, which resulted in improved blood compatibility. Four SIBS valves (two with phosphocholine modification) were implanted into sheep. Echocardiography, blood chemistry, and system pathology were conducted to evaluate the valve's performance and biocompatibility. No adverse response was identified following implantation. The average survival time was 76 days, and one sheep with the phosphocholine modified valve passed the FDA minimum requirement of 140 days with approximately 20 million cycles of valve activity. The explanted valves were observed under the aid of a dissection microscope, and evaluated via histology, SEM and X-ray. Surface cracks and calcified tissue deposition were found on the leaflets. In conclusion, we demonstrated the applicability of using a new rat abdominal aorta model for biocompatibility assessment of polymeric materials. A smooth and complete coating surface is essential for the biocompatibility of PET/SIBS composite, and surface modification using phosphocholine improves blood compatibility. Extrinsic calcification was identified on the leaflets and was associated with regions of surface cracks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The durability of a polymer trileaflet valve is dependent on leaflet stress concentrations, so valve designs that reduce stress can, hypothetically, increase durability. Design aspects that are believed to contribute to reduced leaflet stress include stent flexibility, parabolic coaptation curvature, and leaflet anisotropy. With this in mind, the purpose of this investigation was to elucidate what specific combinations of these parameters promote optimal acute and long-term valve function. A combination of four stent designs, seven leaflet reinforcement materials, and three coaptation geometries were evaluated through a combination of experimentation and modeling. Static tensile and Poisson’s ratio tests and dynamic tensile fatigue testing were used to evaluate the individual leaflet components; and hydrodynamic testing and accelerated valve fatigue was used to assess complete valve prototypes. The two most successful designs included a 0.40 mm thick knit-reinforced valve with a fatigue life of 10.35 years, and a 0.20 mm thick knit-reinforced valve with a 28.9 mmHg decrease in pressure drop over the former. A finite element model was incorporated to verify the impact of the above-mentioned parameters on leaflet stress concentrations. Leaflet anisotropy had a large impact on stress concentrations, and matching the circumferential modulus to that of the natural valve showed the greatest benefit. Varying the radial modulus had minimal impact. Varying coaptation geometry had no impact, but stent flexibility did have a marked effect on the stress at the top of the commissure, where a completely rigid stent resulted in a higher peak stress than a flexible stent (E = 385 MPa). In conclusion, stent flexibility and leaflet anisotropy do effect stress concentrations in the SIBS trileaflet valve, but coaptation geometry does not. Regions of high stress concentrations were linked to failure locations in vitro, so a fatigue prediction model was developed from the S/N curves generated during dynamic tensile testing of the 0.20 mm knit-reinforced leaflets. Failure was predicted at approximately 400 million cycles (10 years) at the top of the commissure. In vitro fatigue of this valve showed failure initiation after approximately 167 million cycles (4.18 years), but it was related to a design defect that is subsequently being changed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les substituts valvulaires disponibles actuellement comportent encore plusieurs lacunes. La disponibilité restreinte des allogreffes, les risques de coagulation associés aux valves mécaniques et la durabilité limitée des bioprothèses en tissu animal sont toutes des problématiques que le génie tissulaire a le potentiel de surmonter. Avec la méthode d’auto-assemblage, le seul support des cellules consiste en leur propre matrice extracellulaire, permettant la fabrication d’un tissu entièrement libre de matériau exogène. Ce projet a été précédé par ceux des doctorantes Catherine Tremblay et Véronique Laterreur, ayant respectivement développé une méthode de fabrication de valves moulées par auto-assemblage et une nouvelle version de bioréacteur. Au cours de cette maîtrise, le nouveau bioréacteur a été adapté à une utilisation stérile avec des tissus vivants et la méthode de fabrication de valves moulées a été modifiée puis éprouvée avec la production de 4 prototypes. Ces derniers n’ont pas permis d’obtenir des performances satisfaisantes en bioréacteur, motivant la conception d’une nouvelle méthode. Plutôt que de tenter de répliquer la forme native des valves cardiaques, des études récentes ont suggéré une géométrie tubulaire. Cela permettrait une fabrication simplifiée, une implantation rapide, et un encombrement minimal en vue d’opérations percutanées. Cette approche minimaliste s’accorde bien avec la méthode d’auto-assemblage, qui a déjà été utilisée pour la production de vaisseaux de petits diamètres. Un total de 11 tubes ont été produits par l’enroulement de feuillets fibroblastiques auto-assemblés, puis ont été transférés sur des mandrins de diamètre inférieur, leur permettant de se contracter librement. La caractérisation de deux tubes contrôles a démontré que cette phase de précontraction était bénéfique pour les propriétés du tissu en plus de prévenir la contraction en bioréacteur. Les prototypes finaux pouvaient supporter un écoulement physiologique pulmonaire. Cette nouvelle méthode montre que le procédé d’auto-assemblage a le potentiel d’être utilisé pour fabriquer des valves cardiaques tubulaires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dental impression is an important step in the preparation of prostheses since it provides the reproduction of anatomic and surface details of teeth and adjacent structures. The objective of this study was to evaluate the linear dimensional alterations in gypsum dies obtained with different elastomeric materials, using a resin coping impression technique with individual shells. A master cast made of stainless steel with fixed prosthesis characteristics with two prepared abutment teeth was used to obtain the impressions. References points (A, B, C, D, E and F) were recorded on the occlusal and buccal surfaces of abutments to register the distances. The impressions were obtained using the following materials: polyether, mercaptan-polysulfide, addition silicone, and condensation silicone. The transfer impressions were made with custom trays and an irreversible hydrocolloid material and were poured with type IV gypsum. The distances between identified points in gypsum dies were measured using an optical microscope and the results were statistically analyzed by ANOVA (p < 0.05) and Tukey's test. The mean of the distances were registered as follows: addition silicone (AB = 13.6 µm, CD=15.0 µm, EF = 14.6 µm, GH=15.2 µm), mercaptan-polysulfide (AB = 36.0 µm, CD = 36.0 µm, EF = 39.6 µm, GH = 40.6 µm), polyether (AB = 35.2 µm, CD = 35.6 µm, EF = 39.4 µm, GH = 41.4 µm) and condensation silicone (AB = 69.2 µm, CD = 71.0 µm, EF = 80.6 µm, GH = 81.2 µm). All of the measurements found in gypsum dies were compared to those of a master cast. The results demonstrated that the addition silicone provides the best stability of the compounds tested, followed by polyether, polysulfide and condensation silicone. No statistical differences were obtained between polyether and mercaptan-polysulfide materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the response of the subcutaneous connective tissue of BALB/c mice to root filling materials indicated for primary teeth: zinc oxide/eugenol cement (ZOE), Calen paste thickened with zinc oxide (Calen/ZO) and Sealapex sealer. The mice (n=102) received polyethylene tube implants with the materials, thereby forming 11 groups, as follows: I, II, III: Calen/ZO for 7, 21 and 63 days, respectively; IV, V, VI: Sealapex for 7, 21 and 63 days, respectively; VII, VIII, IX: ZOE for 7, 21 and 63 days, respectively; X and XI: empty tube for 7 and 21 days, respectively. The biopsied tissues were submitted to histological analysis (descriptive analysis and semi-quantitative analysis using a scoring system for collagen fiber formation, tissue thickness and inflammatory infiltrate). A quantitative analysis was performed by measuring the area and thickness of the granulomatous reactionary tissue (GRT). Data were analyzed by Kruskal-Wallis, ANOVA and Tukey's post-hoc tests (?=0.05). There was no significant difference (p>0.05) among the materials with respect to collagen fiber formation or GRT thickness. However, Calen/ZO produced the least severe inflammatory infiltrate (p<0.05). The area of the GRT was significantly smaller (p<0.05) for Calen/ZO and Sealapex. In conclusion, Calen/ZO presented the best tissue reaction, followed by Sealapex and ZOE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to assess the response of apical and periapical tissues of dogs' teeth after root canal filling with different materials. Forty roots from dogs' premolars were prepared biomechanically and assigned to 4 groups filled with: Group I: commercial calcium hydroxide and polyethylene glycol-based paste (Calen®) thickened with zinc oxide; Group II: paste composed of iodoform, Rifocort® and camphorated paramonochlorophenol; Group III: zinc oxide-eugenol cement; Group IV: sterile saline. After 30 days, the samples were subjected to histological processing. The histopathological findings revealed that in Groups I and IV the apical and periapical regions exhibited normal appearance, with large number of fibers and cells and no resorption of mineralized tissues. In Group II, mild inflammatory infiltrate and mild edema were observed, with discrete fibrogenesis and bone resorption. Group III showed altered periapical region and thickened periodontal ligament with presence of inflammatory cells and edema. It may be concluded that the Calen paste thickened with zinc oxide yielded the best tissue response, being the most indicated material for root canal filling of primary teeth with pulp vitality.