6 resultados para Valmistustekniikka
Resumo:
Tässä kandidaattityössä on käsitelty Rusatom Overseas Oy:n toimittaman ydinvoimalaitoksen AES-2006 reaktoripiiriin kuuluvan painesäiliön ominaisuuksia, materiaalivalintoja ja niiden kriteerejä, reaktorin valmistusmenettelyä ja sen asennusvaiheita mukaan lukien pääkiertoputkiston hitsaus julkisesti saatavilla olevan materiaalin pohjalta. Tässä kandidaatintyössä on kuvattu AES-2006 ydinvoimalaitoksen kehityshistoria ja lueteltu sen keskeisimmät eroavuudet edeltäjistään. Työn keskeisessä osassa on tarkastettu VVER-1200 reaktorin painesäiliön toimittajan ilmoittaman teräksen koostumus ja tärkeimpien seosaineiden vaikutus painesäiliöön ja koko voimalaitoksen käyttöikään. Tämän jälkeen on käsitelty reaktorin painesäiliön valmistustekniikkaa ja asennusta reaktorirakennuksessa. Johtopäätöksissä on vedetty yhteen tulokset ja otettu kantaa vertailukelpoiseen painesäiliöteräkseen ja sen ominaisuuksiin. Tärkeimmiksi seikoiksi nousevat tässä työssä seosaineiden myönteinen ja kielteinen vaikutus koko ydinvoimalaitoksen käyttöikään, ja ko. seosaineiden hallinnan tärkeys valmistus- ja asennusvaiheissa.
Resumo:
Diplomityössä tutkittiin päällystetyn paperin kuivatukseen käytettävän ilmakuivaimen rakennetta ja kustannuksia. Selvitysten perusteella modernisoinnin kohteeksi valittiin kuivaimen runko ja kääntöosa. Niiden modernisoinnissa huomioitiin nykyaikaisten valmistusmenetelmien mukanaan tuomia etuja ja mahdollisuuksia. Työn perusteella ehdotetaan nykyisen putkipalkkirakenteen korvaamista levyrakenteisella konstruktiolla. Tämä edellyttää särmäyksen tarkkaa hallintaa sekä laserleikkauksen hyväksikäyttöä levyosien valmistuksessa. Laser-leikkauksella vähennetään lisäksi leikkauksen jälkeisiä työvaiheita sekä mahdollistetaan osien vapaampi muotoilu. Uuden konstruktion myötä osien, nimikkeiden, hitsimetrien ja kustannusten määrät vähenevät sekä tuotantoketju ja kokoonpano yksinkertaistuvat. Lisäksi levyrakenteen ansiosta teollinen muotoilu kyetään ottamaan entistä paremmin huomioon tuotteen suunnittelussa. Jatkotoimenpiteenä levykonstruktiota kehitetään sekä sen mahdollisuuksia analysoidaan eri menetelmillä.
Resumo:
Tämä kandidaatintyö on valmistuksellinen näkökulma ruostumattoman teräksen CO2-laserhitsauksen perusteisiin. Tavoitteena on perehdyttää lukija ruostumattoman teräksen CO2-laserhitsauksen valmistusteknillisiin vaatimuksiin ja teollisuuden sovelluksiin.
Resumo:
Laser additive manufacturing (LAM), known also as 3D printing, has gained a lot of interest in past recent years within various industries, such as medical and aerospace industries. LAM enables fabrication of complex 3D geometries by melting metal powder layer by layer with laser beam. Research in laser additive manufacturing has been focused in development of new materials and new applications in past 10 years. Since this technology is on cutting edge, efficiency of manufacturing process is in center role of research of this industry. Aim of this thesis is to characterize methods for process efficiency improvements in laser additive manufacturing. The aim is also to clarify the effect of process parameters to the stability of the process and in microstructure of manufactured pieces. Experimental tests of this thesis were made with various process parameters and their effect on build pieces has been studied, when additive manufacturing was performed with a modified research machine representing EOSINT M-series and with EOS EOSINT M280. Material used was stainless steel 17-4 PH. Also, some of the methods for process efficiency improvements were tested. Literature review of this thesis presents basics of laser additive manufacturing, methods for improve the process efficiency and laser beam – material- interaction. It was observed that there are only few public studies about process efficiency of laser additive manufacturing of stainless steel. According to literature, it is possible to improve process efficiency with higher power lasers and thicker layer thicknesses. The process efficiency improvement is possible if the effect of process parameter changes in manufactured pieces is known. According to experiments carried out in this thesis, it was concluded that process parameters have major role in single track formation in laser additive manufacturing. Rough estimation equations were created to describe the effect of input parameters to output parameters. The experimental results showed that the WDA (width-depth-area of cross-sections of single track) is correlating exponentially with energy density input. The energy density input is combination of the input parameters of laser power, laser beam spot diameter and scan speed. The use of skin-core technique enables improvement of process efficiency as the core of the part is manufactured with higher laser power and thicker layer thickness and the skin with lower laser power and thinner layer thickness in order to maintain high resolution. In this technique the interface between skin and core must have overlapping in order to achieve full dense parts. It was also noticed in this thesis that keyhole can be formed in LAM process. It was noticed that the threshold intensity value of 106 W/cm2 was exceeded during the tests. This means that in these tests the keyhole formation was possible.
Resumo:
Suurelle yleisölle lisäävä valmistustekniikka eli ns. 3D-tulostustekniikka näyttäytyy lehtien otsikoissa ja artikkeleissa esiin pulpahtavana ”muotiaiheena”, mutta sekä muovien 3D-tulostustekniikka että metallienkin vastaava valmistustekniikka on ollut olemassa maailmalla ja Suomessa 80-luvun puolivälistä alkaen. Yhdysvalloissa ja Saksassa tekniikkaa käytetään valmistavassa teollisuudessa toiminnallisten osien tuotannossa. Esimerkiksi lentokoneen suihkumoottorien osia ja lääketieteellisiä välineitä tehdään metallijauheesta lisäävän valmistuksen avulla. Itse asiassa eräs menetelmä metalliesineiden valmistamiseksi lasersäteen avulla keksittiin Suomessa ja sitä myös kehiteltiin täällä, mutta teollisuudenala lähti aikanaan nousuun Saksassa. Lisäävä valmistus on tällä hetkellä maailmanlaajuisesti eräs kiinnostavista tuotantotekniikoista, jonka uskotaan muuttavan monia asioita tuotteiden suunnittelussa, toiminnoissa ja valmistuksessa. Tämä tekniikka ei kiinnosta pelkästään valmistavaa teollisuutta, vaan tietotekniikan, lääketieteen, koruvalmistuksen ja muotoilun osaajat sekä uusien liiketoimintamallien kehittäjät ja logistiikka operaattorit ovat teknologiasta kiinnostuneita. Suomelle 3D-tulostustekniikka on suuri mahdollisuus, sillä maassamme on vahva teollinen tieto- ja viestintätekniikkaosaaminen sekä lisäksi olemme maassamme erikoistuneet varsin vaativien teollisiin laitteiden valmistukseen. Eräät suurimmista mahdollisuuksista tällä tekniikalla ovat toimitusketjuihin liittyvät muutokset. Uutta on, että pienetkin yritykset ja organisaatiot voivat soveltaa tätä tekniikkaa valmistuksessa ja jopa kehitellä täysin uusia tuotteita. On myös arvioitu, että lisäävän valmistuksen merkitys valmistustapoihin ja toimitusketjuihin voi olla suurempi kuin koskaan aikaisemmin minkään teknologisen uudistuksen kohdalla. Lisäävästä valmistuksesta usein puhutaankin kolmantena teollisena vallankumouksena juuri tämän takia. 3D-tulostuksen kustannuksia tarkasteltaessa on tärkeätä huomata että vain sulatetun jauheen määrä ratkaisee, ei käytettävän geometrian monimutkaisuus. Tämä erottaa perinteisen ja lisäävän valmistuksen toisistaan. Perinteisesti kappaleen keventäminen on maksanut ”ylimääräistä”, kun taas lisäävässä valmistuksessa kappaleen keveys on jopa kustannusta alentava tekijä. Valmistettavan kappaleen korkeus on yksi kriittisimpiä kustannuksiin vaikuttavia tekijöitä. Tämän vuoksi useamman kappaleen valmistus yhdellä kertaa parantaa kannattavuutta huomattavasti. Samalla kertaa voi ja itse asiassa kannattaakin valmistaa keskenään erilaisia kappaleita. Perinteiset valmistustavat sen sijaan ovat nykyajan vaatimuksille liian hitaita; ne joustavat huonosti, kun kyseessä on pienet, asiakaslähtöiset erät. Trendi on globaalisti kohden yksilöllisiä asiakaslähtöisiä tuotteita, jolloin myös valmistustekniikoiden on oltava joustavia pysyäkseen näiden vaatimusten perässä. Lisäävä valmistus sopii erityisesti hyvin piensarjatuotantoon. Suuremmissa valmistuserissä kuitenkin perinteiset tekniikat ovat kustannustehokkaampia.
Resumo:
Puolijohteiden yleistyttyä vuodesta 1948 alkaen, ovat elektroniset laitteet pienentyneet jatkuvasti tehojen kuitenkin kasvaessa. Kasvaneet tehotiheydet kuitenkin vaikeuttavat laitesuunnittelua, sillä puoljohdekomponenttien suorituskyvylle ja eliniälle on oleellista lämpötilojen ja lämpötilavaihteluiden minimointi. Perinteisen ilmajäähdytyksen lähestyessä rajojaan niin kokonaistehon kuin järkevän energiatehokkuudenkin suhteen, on parhaaksi seuraavaksi teknologiaksi ennustettu kaksifaasijäähdytystä, jonka suorituskyky ja energiatehokkuus ovat vaaditulla tasolla. Kaksifaasijäähdytyksen optimaaliselle toiminnalle tärkeää on hyvin suunniteltu ja tarkasti valmistettu lämmönsiirtopinta, jota kutsutaan mikrokanavistoksi. Pulssitettu laserkaiverrus on edistynyt valmistustekniikka, jonka tarkkuus ja luotettavuus sopisivat mikrokanavistojen valmistamiseen. Laserkaiverruksella saavutettavat lopputulokset vaihtelevat kuitenkin materiaalista riippuen ja kupari – jota käytetään yleisesti lämmönjohteena – on eräs huonoimmin lasertyöstöön reagoivista materiaaleista ja siksi on oleellista selvittää laser-kaiverruksen toimivuutta kuparisten mikrokanavistojen valmistuksessa. Pulssitetun laser-kaiverruksen eri variaatioista nanosekunti-luokan pulssinpituuksilla toimivat laitteet ovat jatkuvan tuotannon kannalta paras vaihtoehto niiden hyvän tuottavuuden, saatavuuden sekä kohtuullisen alkuinvestoinnin vuoksi. Käytännön kaiverruskokeiden perusteella selvisi, että menetelmä on laatunsa ja tarkkuutensa puolesta sopiva varsinaiseen tuotantoon. Kaiverruksen tehokkuus kuparia työstettäessä on kuitenkin ennakoituakin heikompi ja niin valmistus- kuin suunnitelu-prosessikin vaativat vielä jatkotutkimusta ja -kehitystä.