993 resultados para Vaccinia Virus
Resumo:
The role of individual viral proteins in the immune response to bluetongue virus (BTV) is not clearly understood. To investigate the contributions of the outer capsid proteins, VP2 and VP5, and possible interactions between them, these proteins were expressed from recombinant vaccinia viruses either as individual proteins or together in double recombinants, or with the core protein VP7 in a triple recombinant. Comparison of the immunogenicity of the vaccinia expressed proteins with BTV expressed proteins was carried out by inoculation of rabbits and sheep. Each of the recombinants was capable of stimulating an anti-BTV antibody response, although there was a wide range in the level of response between animals and species. Vaccinia-expressed VP2 was poorly immunogenic, particularly in rabbits. VP5, on the whole, stimulated higher ELISA titers in rabbits and sheep and in some animals in both species was able to stimulate virus neutralizing antibodies. When the protective efficacy of VP2 and VP5 was tested in sheep, vaccinia-expressed VP2, VP5 and VP2 + VP5 were protective, with the most consistent protection being in groups immunized with both proteins. (C) 1997 Elsevier Science B.V.
Resumo:
Virus-like particles (VLPs) are being currently investigated in vaccines against viral infections in humans. There are different recombinant-protein-expression systems available for obtaining the necessary VLP preparation for vaccination. However, the differences in post-translational modifications of the recombinant proteins obtained and their differences in efficacy in eliciting an anti-viral response in vaccines are not well established. In this study we have compared the posttranslational modifications of human papillomavirus type-6b major capsid protein L1 (HPV 6bL1) expressed using recombinant baculovirus (rBV) in Sf9 (Spodoptera frugiperda) insect cells, with the protein expressed using recombinant vaccinia virus (rVV) in CV-1 kidney epithelial cells, Two-dimensional gel electrophoresis of biosynthetically labelled rBV-expressed HPV 6bL1 showed several post-translationally modified variants of the protein, whereas rVV-expressed HPV 6bL1 showed only a few variants. Phosphorylations were detected at threonine and serine residues for the L1 expressed from rBV compared with phosphorylation at serine residues only for the L1 expressed from rVV. HPV 6bL1 expressed using rBV incorporated [H-3]mannose and [H-3]galactose, whereas HPV 6bL1 expressed using rVV incorporated only [H-3]galactose. We conclude that post-translational modification of recombinant HPV 6bL1 can differ according to the system used for its expression. Since recombinant L1 protein is a potential human-vaccine candidate, the implication of the observed differences in post-translational modifications on immunogenicity of L1 VLPs warrants investigation.
Resumo:
Introduction Hantavirus infections have been described in several regions in Brazil through seroepidemiological studies. Usually, populations are associated with rural and wild environment mainly due to close contact to species of Sigmodontinae rodents, considered hantavirus reservoirs. Methods A retrospective serosurvey was conducted to access the hantavirus seroprevalence in people living in regions affected by bovine vaccinia outbreaks. Results Sera from 53 patients were analyzed and none of them presented anti-hantavirus IgG antibodies. Conclusions This study presents an opportunity to analyze seronegativity despite close and recurrent contact with known hantavirus reservoirs. Aspects of hantavirus and bovine vaccinia emergence are also discussed.
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2014
Resumo:
Recombinant vaccinia virus with tumour cell specificity may provide a versatile tool either for direct lysis of cancer cells or for the targeted transfer of genes encoding immunomodulatory molecules. We report the expression of a single chain antibody on the surface of extracellular enveloped vaccinia virus. The wild-type haemagglutinin, an envelope glycoprotein which is not required for viral infection and replication, was replaced by haemagglutinin fusion molecules carrying a single chain antibody directed against the tumour-associated antigen ErbB2. ErbB2 is an epidermal growth factor receptor-related tyrosine kinase overexpressed in a high percentage of human adenocarcinomas. Two fusion proteins carrying the single chain antibody at different NH2-terminal positions were expressed and exposed at the envelope of the corresponding recombinant viruses. The construct containing the antibody at the site of the immunoglobulin-like loop of the haemagglutinin was able to bind solubilized ErbB2. This is the first report of replacement of a vaccinia virus envelope protein by a specific recognition structure and represents a first step towards modifying the host cell tropism of the virus.
Resumo:
During the replication cycle of vaccinia virus, four different forms of viral particles are produced. The two extracellular enveloped forms, cell-associated enveloped virus and extracellular enveloped virus, are responsible for cell-to-cell transmission and long-range spread of infection both in vivo and in vitro. Despite the biological importance of the enveloped forms, the mechanism of envelopment and the components involved in this process have been analysed only recently. Therefore the individual steps and the rate-limiting factors of the envelopment process are still unknown. The protein p37K, an unglycosylated but acylated envelope protein of molecular mass 37 kDa, has been shown to be essential for envelopment. However, this study shows that over-expression of p37K by vaccinia virus recombinants reduces rather than increases the yield of infectious enveloped virus which is mainly due to the enveloped virions exhibiting a strongly diminished specific infectivity.
Resumo:
The infection mechanism of vaccinia virus is largely unknown. Neither the attachment protein of extracellular enveloped virus (EEV), the biologically relevant infectious form of the virus, nor its cellular receptor has been identified. Surprisingly, all former attempts using antibodies to block EEV infection of cells in vitro had failed. Here, we report the production of an anti-envelope hyperimmune serum with EEV neutralizing activity and show that a polyclonal antiserum against the extraviral domain of protein B5R also inhibited EEV infection. In vivo, mice vaccinated with B5R protein were protected against a lethal vaccinia virus challenge. This protectivity is likely to be mediated by neutralizing antibodies. Protein A33R, but not A34R and A36R, also proved to be protective in active and passive vaccination experiments. However, in contrast to B5R, A33R protectivity did not correlate with antibody titers. Because anti-A33R antibodies did not neutralize EEV in vitro, the protectivity mediated by A33R protein probably involves a mechanism different from simple antibody binding. Taken together, our results suggest that antibodies to a specific protective epitope or epitopes on protein B5R are able to prevent EEV infection. The protein encoded by the B5R gene is therefore likely to play a crucial role in the initial steps of vaccinia virus infection-binding to a host cell and entry into its cytoplasm.
Resumo:
In this paper, we provide evidence that both the mRNA and protein levels of the cyclin-dependent kinase (CDK) inhibitor p21WAF1/CDK-interacting protein 1 (Cip1) increase upon infection of A431 cells with Vaccinia virus (VACV). In addition, the VACV growth factor (VGF) seems to be required for the gene expression because infection carried out with the mutant virus VACV-VGF- revealed that this strain was unable to stimulate its transcription. Our findings are also consistent with the notion that the VGF-mediated change in p21WAF1/Cip1 expression is dependent on tyrosine kinase pathway(s) and is partially dependent on mitogen-activated protein kinase/extracellular-signal regulated kinase 1/2. We believe that these pathways are biologically significant because VACV replication and dissemination was drastically affected when the infection was carried out in the presence of the relevant pharmacological inhibitors.
Resumo:
We have studied the kinetics of RNA synthesis from the vaccinia virus 7,500-molecular-weight gene (7.5K gene) which is regulated by early and late promoters arranged in tandem. Unexpectedly, after a first burst of RNA synthesis early in infection, transcription was reactivated late in infection. Reactivation was not dependent on the location of the promoter in the genome or on the presence of the upstream late regulatory sequences. The mRNA synthesized from the reactivated promoter in the late phase had the same 5' and 3' ends as the molecules transcribed in the early phase. Interestingly, these molecules were efficiently translated despite the absence of the poly(A) leader characteristic of late mRNAs. Reactivation appears to be dependent on virus assembly since it is prevented by rifampin, a specific inhibitor of morphogenesis. Finally, analysis of various other early genes showed that reactivation is not unique to the 7.5K early promoter.
Resumo:
Neuropeptide Y (NPY) is a 36 amino acid peptide present in the central and peripheral nervous system. Numerous studies point to a role of NPY in cardiovascular regulation. NPY effects are mediated through stimulation of specific cell surface G protein-coupled receptors. To allow biochemical studies of the receptor and of its interaction with the ligand, we have developed a potent expression system for NPY receptors using a recombinant vaccinia virus. A human NPY receptor cDNA was fused to a strong vaccinia virus promoter and inserted into the viral genome by homologous recombination. Recombinant viruses were isolated and tested for their ability to induce NPY binding site expression following infection of mammalian cell lines. Using saturation and competition binding experiments we measured a Bmax of 5-10 x 10(6) NPY binding sites per cell. The Kd for the binding of NPY is about 20 nM. Labelling of infected cells with a fluorochrome-labelled NPY indicated that the recombinant protein integrates into the cell membrane.
Resumo:
A fast method for the identification of recombinant vaccinia viruses directly from individual plaques is described. Plaques are picked, resuspended in PBS-A and processed for PCR using two 'universal' primers. The amplified sequences are analyzed by agarose gel electrophoresis. This procedure allows discrimination between spontaneously arising TK-negative mutants, which do not carry the inserted gene, and the desired TK-negative recombinants resulting from insertional inactivation of the TK gene.
Resumo:
Cell-free translation of total RNA isolated from vaccinia virus-infected cells late in infection results in a complex mixture of polypeptides. A monospecific antibody directed against one of the major structural proteins of the virus particle immunoprecipitated a single polypeptide with a molecular weight of 11,000 (11K) from this mixture. Immunoprecipitation was therefore used to identify the structural polypeptide among the in vitro translation products of RNA purified by hybridization selection to restriction fragments of the vaccinia virus genome. This allowed us to map the mRNA coding for the 11K polypeptide to the extreme left-hand end of the HindIII E fragment. Detailed transcriptional mapping of this region of the genome by nuclease S1 analysis revealed the presence of a late RNA transcribed from the rightward-reading strand. Its 5' end mapped at ca. 130 base pairs to the left of the HindIII site at the junction between the HindIII F and E fragments. The map position of this RNA coincided precisely with the map position of the late message coding for the 11K polypeptide.
Resumo:
A vaccinia virus promoter was evaluated for regulation of a foreign gene in fowlpox virus by a transient expression assay. Fowlpox virus-infected quail cells, transfected with plasmid DNA containing chloramphenicol acetyltransferase (CAT) gene ligated to a vaccinia virus promoter, expressed CAT activity. No CAT activity was detected either in uninfected cells or fowlpox virus-infected cells. These results indicated that a heterologous vaccinia virus promoter can regulate expression of a foreign gene in fowlpox virus.
Resumo:
We have mapped the genes coding for two major structural polypeptides of the vaccinia virus core by hybrid selection and transcriptional mapping. First, RNA was selected by hybridization to restriction fragments of the vaccinia virus genome, translated in vitro and the products were immunoprecipitated with antibodies against the two polypeptides. This approach allowed us to map the genes to the left hand end of the largest Hind III restriction fragment of 50 kilobase pairs. Second, transcriptional mapping of this region of the genome revealed the presence of the two expected RNAs. Both RNAs are transcribed from the leftward reading strand and the 5'-ends of the genes are separated by about 7.5 kilobase pairs of DNA. Thus, two genes encoding structural polypeptides with a similar location in the vaccinia virus particle are clustered at approximately 105 kilobase pairs from the left hand end of the 180 kilobase pair vaccinia virus genome.
Resumo:
We describe the unusual structure of a vaccinia virus late mRNA. In these molecules, the protein-coding sequences of a major late structural polypeptide are preceded by long leader RNAs, which in some cases are thousands of nucleotides long. These sequences map to different regions of the viral genome and in one instance are separated from the late gene by more than 100 kb of DNA. Moreover, the leader sequences map either upstream or downstream of the late gene, are transcribed from either DNA strand, and are fused to the late gene coding sequence via a poly(A) stretch. This demonstrates that vaccinia virus produces late mRNAs by tagging the protein-coding sequences onto the 3' end of other RNAs.