991 resultados para VOLTAGE REGULATORS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper makes an attempt to assess the benefits of replacing a conventional generator excitation system (AVR + PSS) with a nonlinear voltage regulator using the concepts of synchronizing and damping torque components in a single machine infinite bus (SMIB) system. In recent years, there has been considerable interest in designing nonlinear excitation controllers, which are expected to give better dynamic performance over a wider range of system and operating conditions. The performance of these controllers is often justified by simulation studies on few test cases which may not adequately represent the diverse operating conditions of a typical power system. The performance of two such nonlinear controllers which are designed based on feedback linearization and include automatic voltage regulation with good dynamic performance have been analyzed using an SMIB model. Linearizing the nonlinear control laws along with the SMIB system equations, a Heffron Phillip's type of a model has been derived. Concepts of synchronizing and damping torque components have been used to show that such controllers can impair the small signal stability under certain operating conditions. This paper shows the possibility of negative damping contribution due to nonlinear voltage regulators and gives a new insight on understanding the physical impact of complex nonlinear control laws on power system dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a mixed-integer linear programming model to solve the problem of allocating voltage regulators and fixed or switched capacitors (VRCs) in radial distribution systems. The use of a mixed-integer linear model guarantees convergence to optimality using existing optimization software. In the proposed model, the steady-state operation of the radial distribution system is modeled through linear expressions. The results of one test system and one real distribution system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. An heuristic to obtain the Pareto front for the multiobjective VRCs allocation problem is also presented. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical Protection systems and Automatic Voltage Regulators (AVR) are essential components of actual power plants. Its installation and setting is performed during the commissioning, and it needs extensive experience since any failure in this process or in the setting, may entails some risk not only for the generator of the power plant, but also for the reliability of the power grid. In this paper, a real time power plant simulation platform is presented as a tool for improving the training and learning process on electrical protections and automatic voltage regulators. The activities of the commissioning procedure which can be practiced are described, and the applicability of this tool for improving the comprehension of this important part of the power plants is discussed. A commercial AVR and a multifunction protective relay have been tested with satisfactory results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optimal scheduling of voltage regulators (VRs), fixed and switched capacitors and voltage on customer side of transformer (VCT) along with the optimal allocaton of VRs and capacitors are performed using a hybrid optimisation method based on discrete particle swarm optimisation and genetic algorithm. Direct optimisation of the tap position is not appropriate since in general the high voltage (HV) side voltage is not known. Therefore, the tap setting can be determined give the optimal VCT once the HV side voltage is known. The objective function is composed of the distribution line loss cost, the peak power loss cost and capacitors' and VRs' capital, operation and maintenance costs. The constraints are limits on bus voltage and feeder current along with VR taps. The bus voltage should be maintained within the standard level and the feeder current should not exceed the feeder-rated current. The taps are to adjust the output voltage of VRs between 90 and 110% of their input voltages. For validation of the proposed method, the 18-bus IEEE system is used. The results are compared with prior publications to illustrate the benefit of the employed technique. The results also show that the lowest cost planning for voltage profile will be achieved if a combination of capacitors, VRs and VCTs is considered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Determination of the placement and rating of transformers and feeders are the main objective of the basic distribution network planning. The bus voltage and the feeder current are two constraints which should be maintained within their standard range. The distribution network planning is hardened when the planning area is located far from the sources of power generation and the infrastructure. This is mainly as a consequence of the voltage drop, line loss and system reliability. Long distance to supply loads causes a significant amount of voltage drop across the distribution lines. Capacitors and Voltage Regulators (VRs) can be installed to decrease the voltage drop. This long distance also increases the probability of occurrence of a failure. This high probability leads the network reliability to be low. Cross-Connections (CC) and Distributed Generators (DGs) are devices which can be employed for improving system reliability. Another main factor which should be considered in planning of distribution networks (in both rural and urban areas) is load growth. For supporting this factor, transformers and feeders are conventionally upgraded which applies a large cost. Installation of DGs and capacitors in a distribution network can alleviate this issue while the other benefits are gained. In this research, a comprehensive planning is presented for the distribution networks. Since the distribution network is composed of low and medium voltage networks, both are included in this procedure. However, the main focus of this research is on the medium voltage network planning. The main objective is to minimize the investment cost, the line loss, and the reliability indices for a study timeframe and to support load growth. The investment cost is related to the distribution network elements such as the transformers, feeders, capacitors, VRs, CCs, and DGs. The voltage drop and the feeder current as the constraints are maintained within their standard range. In addition to minimizing the reliability and line loss costs, the planned network should support a continual growth of loads, which is an essential concern in planning distribution networks. In this thesis, a novel segmentation-based strategy is proposed for including this factor. Using this strategy, the computation time is significantly reduced compared with the exhaustive search method as the accuracy is still acceptable. In addition to being applicable for considering the load growth, this strategy is appropriate for inclusion of practical load characteristic (dynamic), as demonstrated in this thesis. The allocation and sizing problem has a discrete nature with several local minima. This highlights the importance of selecting a proper optimization method. Modified discrete particle swarm optimization as a heuristic method is introduced in this research to solve this complex planning problem. Discrete nonlinear programming and genetic algorithm as an analytical and a heuristic method respectively are also applied to this problem to evaluate the proposed optimization method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electric distribution networks are now in the era of transition from passive to active distribution networks with the integration of energy storage devices. Optimal usage of batteries and voltage control devices along with other upgrades in network needs a distribution expansion planning (DEP) considering inter-temporal dependencies of stages. This paper presents an efficient approach for solving multi-stage distribution expansion planning problems (MSDEPP) based on a forward-backward approach considering energy storage devices such as batteries and voltage control devices such as voltage regulators and capacitors. The proposed algorithm is compared with three other techniques including full dynamic, forward fill-in, backward pull-out from the point of view of their precision and their computational efficiency. The simulation results for the IEEE 13 bus network show the proposed pseudo-dynamic forward-backward approach presents good efficiency in precision and time of optimization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In stressed power systems with large induction machine component, there exist undamped electromechanical modes and unstable montonic voltage modes. This article proposes a sequential design of an excitation controller and a power system stabiliser (PSS) to stabilise the system. The operating region, with induction machines in stressed power systems, is often not captured using a linearisation around an operating point, and to alleviate this situation a robust controller is designed which guaruntees stable operation in a large region of operation. A minimax linear quadratic Gaussian design is used for the design of the supplementary control to automatic voltage regulators, and a classical PSS structure is used to damp electromechanical oscillations. The novelty of this work is in proposing a method to capture the unmodelled nonlinear dynamics as uncertainty in the design of the robust controller. Tight bounds on the uncertainty are obtained using this method which enables high-performance controllers. An IEEE benchmark test system has been used to demonstrate the performance of the designed controller

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper a three-phase power flow for electrical distribution systems considering different models of voltage regulators is presented. A voltage regulator (VR) is an equipment that maintains the voltage level in a predefined value in a distribution line in spite of the load variations within its nominal power. Three different types of connections are analyzed: 1) wye-connected regulators, 2) open delta-connected regulators and 3) closed delta-connected regulators. To calculate the power flow, the three-phase backward/forward sweep algorithm is used. The methodology is tested on the IEEE 34 bus distribution system. ©2008 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper deals with the design and analysis of a Dynamic Voltage Restorer output voltage control. Such control is based on a multiloop strategy, with an inner current PID regulator and an outer P+Resonant voltage controller. The inner regulator is applied on the output inductor current. It will be also demonstrated how the load current behavior may influence in the DVR output voltage, which justifies the need for the resonant controller. Additionally, it will be discussed the application of a modified algorithm for the identification of the DVR voltage references, which is based on a previously presented positive sequence detector. Since the studied three-phase DVR is assumed to be based on three identical H-bridge converters, all the analysis and design procedures were realized by means of single-phase equivalent circuits. The discussions and conclusions are supported by theoretical calculations, nonlinear simulations and some experimental results. ©2008 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this work is to study voltage control and energy balance of a split DC bus topology within a power electronics equipment connected to the AC mains, such as UPS systems, wind power generators, active filters and FACTS devices. A typical configuration in such equipment has two mains connected converters sharing a common DC bus, one series connected and the other parallel connected. The DC bus is usually composed by a battery or a capacitor bank. In the proposed topology, the DC bus is divided in two sides, interconnected with a buck-boost converter, which controls power flow and DC voltage on both sides. © 2009 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Voltage reference generation is an important issue on electronic power conditioners or voltage compensators connected to the electric grid. Several equipments, such as Dynamic Voltage Restorers (DVR), Uninterruptable Power Supplies (UPS) and Unified Power Quality Conditioners (UPQC) need a proper voltage reference to be able to compensate electric network disturbances. This work presents a new reference generator's algorithm, based on vector algebra and digital filtering techniques. It is particularly suited for the development of voltage compensators with energy storage, which would be able to mitigate steady state disturbances, such as waveform distortions and unbalances, and also transient disturbances, like voltage sags and swells. Simulation and experimental results are presented for the validation of the proposed algorithm. © 2011 IEEE.