996 resultados para VOID FORMATION
Resumo:
Condensed clusters of point defects within an InGaN/AlGaN double heterostructure grown by metal-organic vapor phase epitaxy on sapphire substrate have been observed using transmission electron microscopy. The existence of voids results in failure of the heterostructure in electroluminescence. The voids are 50-100 nm in diameter and are distributed inhomogeneously within In0.25Ga0.75N/AlGaN active layers. The density of the voids was measured as 10(15) cm(-3), which corresponds to a density of dangling bonds of 10(20) cm(-3). These dangling bonds may fully deplete free carriers in this double heterostructure and result in the heterostructure having high resistivity as confirmed by electrical measurement. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
"Materials Central, Contract no. AF 33(616)-5926. Project no. 7351."
Resumo:
Void breaking and formation in a packed bed are important phenomena in stabilising and optimising the performance of reactors such as the blast furnace, spouted bed and catalytic regenerator. These phenomena have been studied using a mathematical model. The model is based on a previously published force balance approach to predict the cavity size. Limited numbers of experiments, at room temperature, have been carried out in order to compare the experimental results with theory. A good agreement has been found between the experimental and theoretical results. In addition, the predictions have been compared with published data, which give reasonable agreement. The role of various forces (friction, pressure and bed weight) on void initiation and breaking has been investigated. The effect of bed height, particle diameter and density, void fraction, as well as gas flow rate on void formation and breaking has also been studied.
Resumo:
In this work the void swelling behavior of a 9Cr ferritic/martensitic steel irradiated with energetic Ne-ions is studied. Specimens of Grade 92 steel (a 9%Cr ferritic/martensitic steel) were subjected to an irradiation of Ne-20-ions (with 122 MeV) to successively increasing damage levels of 1, 5 and 10 dpa at a damage peak at 440 and 570 degrees C, respectively. And another specimen was irradiated at a temperature ramp condition (high flux condition) with the temperature increasing from 440 up to 630 degrees C during the irradiation. Cross-sectional microstructures were investigated with a transmission electron microscopy (TEM). A high concentration of cavities was observed in the peak damage region in the Grade 92 steel irradiated to 5 dpa, and higher doses. The concentration and mean size of the cavities showed a strong dependence on the dose and irradiation temperature. Enhanced growth of the cavities at the grain boundaries, especially at the grain boundary junctions, was observed. The void swelling behavior in similar 9Cr steels irradiated at different conditions are discussed by using a classic void formation theory. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Solder materials are used to provide a connection between electronic components and printed circuit boards (PCBs) using either the reflow or wave soldering process. As a board assembly passes through a reflow furnace the solder (initially in the form of solder paste) melts, reflows, then solidifies, and finally deforms between the chip and board. A number of defects may occur during this process such as flux entrapment, void formation, and cracking of the joint, chip or board. These defects are a serious concern to industry, especially with trends towards increasing component miniaturisation and smaller pitch sizes. This paper presents a modelling methodology for predicting solder joint shape, solidification, and deformation (stress) during the assembly process.
Resumo:
Lithofacies distribution indicates that the Much Wenlock Limestone Formation of England and South Wales was desposited on a shelf which was flat and gently subsiding in the north, but topographically variable in the south. Limestone deposition in the north began with 12m of alga-rich limestone, which formed an upward shoaling sequence. Deepening then led to deposition of calcareous silty mudstones on the northern shelf. The remainder of the formation in this area formed during a shelf-wide regression, culminating in the production of an E to W younging sandbody. Lithofacies distribution on the southern shelf was primarily controlled by local subsidence. Six bedded lithofacies are recognised which contain 14 brachiopod/bryozoan dominated assemblages, of which 11 are in situ and three consist of reworked fossils. Microfacies analysis is necessary to distinguish assemblages which reflect original communities from those which reflect sedimentary processes. Turbulence, substrate-type, ease of feeding and other organisms in the environment controlled faunal distribution. Reefs were built dominantly by corals, stromatoporoids, algae and crinoids. Coral/stromatoporoid (Type A) reefs are common, particularly on the northern shelf, where they formed in response to shallowing, ultimately growing in front of the advancing carbonate sandbody. Algae dominate Type B and Type C reefs, reflecting growth in areas of poor water circulation. Lithification of the formation began in the marine-phreatic environment with precipitation of aragonite and high Mg calcite, which was subsequently altered to turbid low Mg calcite. Younger clear spars post-date secondary void formation. The pre-compactional clear spars have features which resemble the products of meteoric water diagenesis, but freshwater did not enter the formation at this time. The pre-compactional spars were precipitated by waters forced from the surrounding silty mudstones at shallow burial depths. Late diagenetic products are stylolites, compaction fractures and burial cements.
Resumo:
The resin transfer molding has gained popularity in the preparation of fiber-reinforced polymer-matrix composites because of its high efficiency and low pollution. The non-uniform inter-tow and intra-tow flows are regarded as the reason of void formation in RTM. According to the process characteristics, the axisymmetric model was developed to study the interaction between the flow in the inter-tow space and that in the intra-tow space. The flow behavior inside the fiber tows was formulated using Brinkman's equation, while that in the open space around the fiber tows was formulated by Stokes' equation. The volume of fluid (VOF) method was applied to track the flow front, and the effects of filling velocity, resin viscosity, inter-tow dimension and intra-tow permeability on fluid pressure and flow front were analyzed. The results show that the flow front difference between the inter-tow and intra-tow becomes larger with the decrease of intra-tow permeability, as well as the increase of filling velocity and inter-tow dimension.
Resumo:
The thermal stress in a Sn3.5Ag1Cu half-bump solder joint under a 3.82×108 A/m2 current stressing was analyzed using a coupled-field simulation. Substantial thermal stress accumulated around the Al-to-solder interface, especially in the Ni+(Ni,Cu)3Sn4 layer, where a maximal stress of 138 MPa was identified. The stress gradient in the Ni layer was about 1.67×1013 Pa/m, resulting in a stress migration force of 1.82×10-16 N, which is comparable to the electromigration force, 2.82×10-16 N. Dissolution of the Ni+(Ni,Cu)3Sn4 layer, void formation with cracks at the anode side, and extrusions at the cathode side were observed
Resumo:
A series of TPU nanocomposites were prepared by incorporating organically modified layered silicates with controlled particle size. To our knowledge, this is the first study into the effects of layered silicate diameter in polymer nanocomposites utilizing the same mineral for each size fraction. The tensile properties of these materials were found to be highly dependent upon the size of the layered silicates. A decrease in disk diameter was associated with a sharp upturn in the stress-strain curve and a pronounced increase in tensile strength. Results from SAXS/SANS experiments showed that the layered silicates did not affect the bulk TPU microphase structure and the morphological response of the host TPU to deformation or promote/hinder strain-induced soft segment crystallization. The improved tensile properties of the nanocomposites containing the smaller nanofillers resulted from the layered silicates aligning in the direction of strain and interacting with the TPU sequences via secondary bonding. This phenomenon contributes predominantly above 400% strain once the microdomain architecture has largely been disassembled. Large tactoids that are unable to align in the strain direction lead to concentrated tensile stresses between the polymer and filler, instead of desirable shear stresses, resulting in void formation and reduced tensile properties. In severe cases, such as that observed for the composite containing the largest silicate, these voids manifest visually as stress whitening.
Resumo:
When a gas is introduced at high velocity through a nozzle into a packed bed, it creates a raceway in the packed bed. It has been found that the raceway size is larger when it is formed by decreasing the gas velocity from its highest value than when it is formed by increasing the gas velocity. This phenomenon is known as raceway hysteresis. A hypothesis has been oroposed to explain the hysteresis phenomenon based on a force-balance approach which includes frictional, bed-weight, and pressure forces. According to this hypothesis, the frictional force acts in different directions when the raceway is expanding and contracting. In this article, the entire packed bed has been divided into radial and Cartesian co-ordinate systems, and the forces acting on the raceway have been solved analytically for a simplified one-dimensional case. Based on the force-balance approach, a general equation has been obtained to predict the diameter of the raceway for increasing And decreasing velocities. A reasonable agreement has been found between the theoretical predictions and experimental observations. The model has also been compared with published experimental and plant data. The hysteresis mechanism in the packed beds can be described reasonably by taking into consideration the direction of frictional forces for the increasing- and decreasin-velocity cases. The effects of the particleshape factor and void fraction on the raceway hysteresis are examined.
Resumo:
Linear Elastic Fracture Mechanics has been used to study the microstructural factors controlling the strength and toughness of two alpha-beta, titanium alloys. Fracture toughness was found to be independent of orientation for alloy Ti/6A1/4-V, but orientation dependent for IMI 700, bend and tension specimens giving similar toughness values. Increasing the solution temperature led to the usual inverse relationship between strength and toughness, with toughness becoming a minimum as the beta transus was approached. The production of a double heat treated microstructure led to a 100% increase in toughness in the high strength alloy and a 20% increase in alloy Ti/6A1/4V, with little decrease in strength. The double heat treated microstruoture was produced by cooling from the beta field into the alpha beta field, followed. by conventional solution treatment and ageing. Forging above the beta transus led to an increase in toughness over alpha beta forging in the high strength alloy, but had little effect on the toughness of Ti/6A1/4V. Light and electron microscopy showed that the increased toughness resulted from the alpha phase being changed from mainly continuous to a discontinuous platelet form in a transformed beta matrix. Void formation occurred at the alpha-beta interface and crack propagation was via the interface or across the platelet depending on which process required the least energy. Varying the solution treatment temperature produced a varying interplatelet spacing and platelet thickness. The finest interplatelet spacing was associated with the highest toughness, since a higher applied stress was required to give the necessary stress concentration to initiate void formation. The thickest alpha platelet size gave the highest toughness which could be interpreted in terms of Krafftt's "process zone size" and the critical crack tip displacement criterion by Hahn and Rosenfield from an analysis by Goodier and Field.
Resumo:
Fatigue crack initiation and subsequent short crack growth behaviour of 2014-5wt%SiC aluminium alloy composites has been examined in 4-point bend loading using smooth bar specimens. The growth rates of long fatigue cracks have also been measured at different stress ratios using pre-cracked specimens. The distributions of SiC particles and of coarse constituent particles in the matrix (which arise as a result of the molten-metal processing and relatively slow cooling rate) have been investigated. Preferential crack initiation sites were found to be SiC-matrix interfaces, SiC particles associated with constituent particles and the coarse constituent particles themselves. For microstructurally short cracks the dispersed SiC particles also act as temporary crack arresters. In the long crack growth tests, higher fatigue crack growth rates were obtained than for monolithic alloys. This effect is attributed to the contribution of void formation, due to the decohesion of SiC particles, to the fatigue crack growth process in the composite. Above crack depths of about 200 μm 'short' crack growth rates were in good agreement with the long crack data, showing a Pris exponent, m = 4 in both cases. For the long crack and short crack growth tests little effect of specimen orientation and grain size was observed on fatigue crack growth rates, but, specimen orientation affected the toughness. No effect of stress ratio in the range R = 0.2-0.5 was seen for long crack data in the Paris region.
Resumo:
We investigate the mechanism of formation of periodic void arrays inside fused silica and BK7 glass irradiated by a tightly focused femtosecond (fs) laser beam. Our results show that the period of each void array is not uniform along the laser propagation direction, and the average period of the void array decreases with increasing pulse number and pulse energy. We propose a mechanism in which a standing electron plasma wave created by the interference of a fs-laser-driven electron wave and its reflected wave is responsible for the formation of the periodic void arrays.
Resumo:
We report the self-formation of quasiperiodic void structure with the length of several hundred micrometers inside the CaF2 crystal. The quasiperiodical voids along the propagation direction of the laser beam were formed spontaneously after the irradiation of a single femtosecond laser beam which was focused at a fixed point inside the crystal sample. The length of the void array varied with the focal depth beneath the sample surface. The possible mechanism of the self-formed void structure was discussed. (c) 2007 American Institute of Physics.
Resumo:
Six new copper metal complexes with formulas Cu(H2O)(2,2'-bpy) (H2L)](2) center dot H4L center dot 4 H2O (1), {Cu(H2O)(2,2'-bpy)-(H3L)}(2)(H2L)]center dot 2H(2)O (2), Cu(H2O)(1,10-phen)(H2L)](2)center dot 6H(2)O (3), Cu(2,2'-bpy)(H2L)](n)center dot nH(2)O (4), Cu(1,10-phen)(H2L)](n)center dot 3nH(2)O (5), and {Cu(2,2'-bpy)(MoO3)}(2)(L)](n)center dot 2nH(2)O (6) have been synthesized starting from p-xylylenediphosphonic acid (H4L) and 2,2'-bipyridine (2,2'-bpy) or 1,10-phenanthroline (1,10-phen) as secondary linkers and characterized by single crystal X-ray diffraction analysis, IR spectroscopy, and thermogravimetric (TG) analysis. All the complexes were synthesized by hydrothermal methods. A dinuclear motif (Cu-dimer) bridged by phosphonic acid represents a new class of simple building unit (SBU) in the construction of coordination architectures in metal phosphonate chemistry. The initial pH of the reaction mixture induced by the secondary linker plays an important role in the formation of the molecular phosphonates 1, 2, and 3. Temperature dependent hydrothermal synthesis of the compounds 1, 2, and 3 reveals the mechanism of the self assembly of the compounds based on the solubility of the phosphonic acid H4L. Two-dimensional coordination polymers 4, 5, and 6, which are formed by increasing the pH of the reaction mixture, comprise Cu-dimers as nodes, organic (H2L) and inorganic (Mo4O12) ligands as linkers. The void space-areas, created by the (4,4) connected nets in compounds 4 and 5, are occupied by lattice water molecules. Thus compounds 4 and 5 have the potential to accommodate guest species/molecules. Variable temperature magnetic studies of the compounds 3, 4, 5, and 6 reveal the antiferromagnetic interactions between the two Cu(II) ions in the eight membered ring, observed in their crystal structures. A density functional theory (DFT) calculation correlates the conformation of the Cu-dimer ring with the magnitude of the exchange parameter based on the torsion angle of the conformation.