964 resultados para VO(2)PEAK
Resumo:
The purpose of the present study was to examine, in highly trained cyclists, the reproducibility of cycling time to exhaustion (T-max) at the power output equal to that attained at peak oxygen uptake ((V) over dot O(2)peak) during a progressive exercise test. Forty-three highly trained male cyclists (M +/- SD; age = 25 +/- 6yrs; weight = 75 +/- 7 kg; (V) over dot(2)peak = 64.8 +/- 5.2 ml.kg(-1) . min(-1)) performed two T-max tests one week apart. While the two measures of T-max were strongly related (r = 0.884; p < 0.001), T-max from the second test (245 +/- 57 s) was significantly higher than that of the first (237 +/- 57 s; p = 0.047; two-tailed). Within-subject variability in the present study was calculated to be 6 +/- 6%, which was lower than that previously reported for Tmax in sub-elite runners (25%). The mean T-max was significantly (p < 0.05) related to both the second ventilatory turnpoint (VT2; r = 0.38) and to (V) over dot O(2)peak (r = 0.34). Despite a relatively low within-subject coefficient of variation, these data demonstrate that the second score in a series of two T-max tests may be significantly greater than the first. Moreover the present data show that T-max in highly trained cyclists is moderately related to VT2 and (V) over dot O(2)peak.
Resumo:
The aim of the study was to test the hypothesis of the involvement of type II fibres in the V.O (2) slow component phenomenon by using two prior fatiguing protocols on the knee extensor muscles. Nine subjects performed three constant-load cycling exercises at a work rate corresponding to 80 % of their V.O (2) max: (i) preceded by a 20-min fatiguing protocol using electromyostimulation (EMS), (ii) preceded by a 20-min fatiguing protocol using voluntary contractions (VOL), and (iii) without fatiguing protocol (NFP). Voluntary and evoked neuromuscular properties of the knee extensor muscles were tested before (PRE) and after (POST) the two fatiguing protocols. Results show a significant reduction in voluntary force after both fatiguing protocols (-19.9 % and -11.8 %, in EMS and VOL, respectively p<0.01). After EMS, this decrease was greater than after VOL (p<0.05) and was combined with a slackening of muscle contractile properties which was absent after VOL (p<0.05). Regarding the effects on oxygen uptake kinetics, the appearance of the slow component was delayed after EMS and its amplitude was lower than those obtained in VOL and NFP conditions (0.48+/-0.07 vs. 0.75+/-0.09 and 0.69+/-0.08 L . min (-1), respectively; p<0.05). It can thus be concluded that exercises dedicated to preferentially fatiguing type II fibres may alter V.O (2) kinetics.
Resumo:
The purpose of this study was to compare O(2) uptake ((.)VO(2)) and muscle electromyography activity kinetics during moderate and severe exercise to test the hypothesis of progressive recruitment of fast-twitch fibers in the explanation of the VO(2) slow component. After an incremental test to exhaustion, 7 trained cyclists (mean +/- SD, 61.4 +/- 4.2 ml x min(-1) x kg(- 1)) performed several square-wave transitions for 6 min at moderate and severe intensities on a bicycle ergometer. The (.)VO(2) response and the electrical activity (i.e., median power frequency, MDF) of the quadriceps vastus lateralis and vastus medialis of both lower limbs were measured continuously during exercise. After 2 to 3 min of exercise onset, MDF values increased similarly during moderate and severe exercise for almost all muscles whereas a (.)VO(2) slow component occurred during severe exercise. There was no relationship between the increase of MDF values and the magnitude of the (.)VO(2) slow component during the severe exercise. These results suggest that the origin of the slow component may not be due to the progressive recruitment of fast-twitch fibers.
Resumo:
We tested the hypothesis that elevation in heart rate (HR) during submaximal exercise in the heat is related, in part, to increased percentage of maximal O(2) uptake (%Vo(2 max)) utilized due to reduced maximal O(2) uptake (Vo(2 max)) measured after exercise under the same thermal conditions. Peak O(2) uptake (Vo(2 peak)), O(2) uptake, and HR during submaximal exercise were measured in 22 male and female runners under four environmental conditions designed to manipulate HR during submaximal exercise and Vo(2 peak). The conditions involved walking for 20 min at approximately 33% of control Vo(2 max) in 25, 35, 40, and 45 degrees C followed immediately by measurement of Vo(2 peak) in the same thermal environment. Vo(2 peak) decreased progressively (3.77 +/- 0.19, 3.61 +/- 0.18, 3.44 +/- 0.17, and 3.13 +/- 0.16 l/min) and HR at the end of the submaximal exercise increased progressively (107 +/- 2, 112 +/- 2, 120 +/- 2, and 137 +/- 2 beats/min) with increasing ambient temperature (T(a)). HR and %Vo(2 peak) increased in an identical fashion with increasing T(a). We conclude that elevation in HR during submaximal exercise in the heat is related, in part, to the increase in %Vo(2 peak) utilized, which is caused by reduced Vo(2 peak) measured during exercise in the heat. At high T(a), the dissociation of HR from %Vo(2 peak) measured after sustained submaximal exercise is less than if Vo(2 max) is assumed to be unchanged during exercise in the heat.
Resumo:
Aim. The aim of the present study was to investigate the validity of the Lactate Minimum Test (LMT) for the determination of peak VO2 on a cycle ergometer and to determine the submaximal oxygen uptake (VO2) and pulmonary ventilation (VE) responses in an incremental exercise test when it is preceded by high intensity exercise (i.e., during a LMT).Methods. Ten trained male athletes (triathletes and cyclists) performed 2 exercise tests in random order on an electromagnetic cycle ergometer: 1) Control Test (CT): an incremental test with an initial work rate of 100 W, and with 25 W increments at 3-min intervals, until voluntary exhaustion; 2) LMT: an incremental test identical to the CT, except that it was preceded by 2 supramaximal bouts of 30-sec (similar to120% VO(2)peak) with a 30-sec rest to induce lactic acidosis. This test started 8 min after the induction of acidosis.Results. There was no significant difference in peak VO2 (65.6+/-7.4 ml.kg(-1).min(-1); 63.8+/-7.5 ml.kg(-1).min(-1) to CT and LMT, respectively). However, the maximal power output (POmax) reached was significantly higher in CT (300.6+/-15.7 W) than in the LMT (283.2+/-16.0 W).VO2 and VE were significantly increased at initial power outputs in LMT.Conclusion. Although the LMT alters the submaximal physiological responses during the incremental phase (greater initial metabolic cost), this protocol is valid to evaluate peak VO2, although the POmax reached is also reduced.
Resumo:
PURPOSE: Alpine ski performance relates closely to both anaerobic and aerobic capacities. During their competitive season, skiers greatly reduce endurance and weight training, and on-snow training becomes predominant. To typify this shift, we compared exhaustive ramp cycling and squat (SJ) and countermovement jumping (CMJ) performance in elite males before and after their competitive season. RESULTS: In postseason compared with preseason: 1) maximal oxygen uptake (VO 2 max) normalized to bodyweight was higher (55.2 +/- 5.2 vs 52.7 +/- 3.6 mL x kg(-1) x min(-1), P < 0.01), but corresponding work rate (W) was unchanged; 2) at ventilatory thresholds (VT), absolute and relative work rates were similar but heart rates were lower; 3) VO2/W slope was greater (9.59 +/- 0.6 vs 9.19 +/- 0.4 mL O2 x min(-1) x W(-1), P = 0.02), with similar flattening (P < 0.01) above V T1 at both time points; and 4) jump height was greater in SJ (47.4 +/- 4.4 vs 44.7 +/- 4.3 cm, P < 0.01) and CMJ (52.7 +/- 4.6 vs 50.4 +/- 5.0 cm, P < 0.01). DISCUSSION: We believe that aerobic capacity and leg power were constrained in preseason and that improvements primarily reflected an in-season recovery from a fatigued state, which was caused by incongruous preseason training. Residual adaptations to high-altitude exposure in preseason could have also affected the results. Nonetheless, modern alpine skiing seemingly provides an ample cardiovascular training stimulus for skiers to maintain their aerobic capacities during the racing season. CONCLUSIONS: We conclude that aerobic fitness and leg explosiveness can be maintained in-season but may be compromised by heavy or excessive preseason training. In addition, ramp test V O2/W slope analysis could be useful for monitoring both positive and negative responses to training.
Resumo:
The purpose of this study was to test the hypothesis that in obese children: 1) Ventilatory efficiency (VentE) is decreased during graded exercise; and 2) Weight loss through diet alone (D) improves VentE, and 3) diet associated with exercise training (DET) leads to greater improvement in VentE than by D. Thirty-eight obese children (10 +/- 0.2 years; BMI > 95(th) percentile) were randomly divided into two Study groups: D (n=17; BMI = 30 +/- 1 kg/m(2)) and DET (n = 21; 28 +/- 1 kg/m(2)). Ten lean children were included in a control group (10 +/- 0.3 years; 17 +/- 0.5 kg/m(2)). All children performed maximal treadmill testing with respiratory gas analysis (breath-by-breath) to determine the ventilatory anaerobic threshold (VAT) and peak oxygen consumption (VO(2) peak). VentE was determined by the VE/VCO(2) method at VAT. Obese children showed lower VO(2) peak and lower VentE than controls (p < 0.05). After interventions, all obese children reduced body weight (p < 0.05). D group did not improve in terms of VO(2) peak or VentE (p > 0.05). In contrast, the DET group showed increased VO(2) peak (p = 0.01) and improved VentE(Delta VE/VCO(2) = -6.1 +/- 0.9; p = 0.01). VentE is decreased in obese children, where weight loss by means of DET, but not D alone, improves VentE and cardiorespiratory fitness during graded exercise.
Resumo:
Concurrent training is recommended for health improvement, but its acute effects on cardiovascular function are not well established. This study analyzed hemodynamics and autonomic modulation after a single session of aerobic (A), resistance (R), and concurrent (A + R) exercises. Twenty healthy subjects randomly underwent four sessions: control (C:30 min of rest), aerobic (A:30 min, cycle ergometer, 75% of VO(2) peak), resistance (R:6 exercises, 3 sets, 20 repetitions, 50% of 1 RM), and concurrent (AR: A + R). Before and after the interventions, blood pressure (BP), heart rate (HR), cardiac output (CO), and HR variability were measured. Systolic BP decreased after all the exercises, and the greatest decreases were observed after the A and AR sessions (-13 +/- 1 and -11 +/- 1 mmHg, respectively, P < 0.05). Diastolic BP decreased similarly after all the exercises, and this decrease lasted longer after the A session. CO also decreased similarly after the exercises, while systemic vascular resistance increased after the R and AR sessions in the recovery period (+4.0 +/- 1.7 and +6.3 +/- 1.9 U, respectively, P < 0.05). Stroke volume decreased, while HR increased after the exercises, and the greatest responses were observed after the AR session (SV, A = -14.6 +/- 3.6, R = -22.4 +/- 3.5 and AR = -23.4 +/- 2.4 ml; HR, A = +13 +/- 2, R = +15 +/- 2 vs. AR = +20 +/- 2 bpm, P < 0.05). Cardiac sympathovagal balance increased after the exercises, and the greatest increase was observed after the AR session (A = +0.7 +/- 0.8, R = +1.0 +/- 0.8 vs. AR = +1.2 +/- 0.8, P < 0.05). In conclusion, the association of aerobic and resistance exercises in the same training session did not potentiate postexercise hypotension, and increased cardiac sympathetic activation during the recovery period.
Resumo:
PURPOSE: Walking training is considered as the first treatment option for patients with peripheral arterial disease and intermittent claudication (IC). Walking exercise has been prescribed for these patients by relative intensity of peak oxygen uptake (VO(2)peak), ranging from 40% to 70% VO(2)peak, or pain threshold (PT). However, the relationship between these methods and anaerobic threshold (AT), which is considered one of the best metabolic markers for establishing training intensity, has not been analyzed. Thus, the aim of this study was to compare, in IC patients, the physiological responses at exercise intensities usually prescribed for training (% VO(2) peak or % PT) with the ones observed at AT. METHODS: Thirty-three IC patients performed maximal graded cardiopulmonary treadmill test to assess exercise tolerance. During the test, heart rate (HR), VO(2), and systolic blood pressure were measured and responses were analyzed at the following: 40% of VO(2)peak; 70% of VO(2)peak; AT; and PT. RESULTS: Heart rate and VO(2) at 40% and 70% of VO(2)peak were lower than those at AT (HR: -13 +/- 9% and -3 +/- 8%, P < .01, respectively; VO(2): -52 +/- 12% and -13 +/- 15%, P < .01, respectively). Conversely, HR and VO(2) at PT were slightly higher than those at AT (HR: +3 +/- 8%, P < .01; VO(2): + 6 +/- 15%, P = .04). None of the patients achieved the respiratory compensation point. CONCLUSION: Prescribing exercise for IC patients between 40% and 70% of VO(2)peak will induce a lower stimulus than that at AT, whereas prescribing exercise at PT will result in a stimulus above AT. Thus, prescribing exercise training for IC patients on the basis of PT will probably produce a greater metabolic stimulus, promoting better cardiovascular benefits.
Resumo:
Emerging data reveal that oral estrogen therapy can increase clinic blood pressure (BP) in postmenopausal women; however, it is important to establish its effects on ambulatory BP, which is a better predictor for target-organ damage. Besides estrogen therapy, aerobic training is widely recommended for post-menopausal women, and it can decrease ambulatory BP levels. This study was designed to evaluate the effect of aerobic training and estrogen therapy on the ambulatory BP of post-menopausal women. Forty seven healthy hysterectomized women were randomly divided (in a double-blind manner) into 4 groups: placebo-control (PLA-CO = 12), estrogen therapy-control (ET-CO = 14), placebo-aerobic training (PLA-AT = 12), and estrogen therapy-aerobic training (ET-AT = 09). The ET groups received estradiol valerate (1 mg/day) and the AT groups performed cycle ergometer, 3x/week at moderate intensity. Hormonal status (blood analysis), maximal cardiopulmonary exercise test (VO(2) peak) and ambulatory BP (24-h, daytime and nighttime) was evaluated before and 6 months after interventions. A significant increase in VO(2) peak was observed only in women who participated in aerobic training groups (+4.6 +/- 1.0 ml kg(-1) min(-1), P=0.00). Follicle-stimulating hormone was a significant decreased in the ET groups (-18.65 +/- 5.19 pg/ml, P=0.00), and it was accompanied by an increase in circulating estrogen (56.1 +/- 6.6 pg/ml). A significant increase was observed in the ET groups for daytime (P=0.01) and nighttime systolic BP (P=0.01), as well as nighttime diastolic BP (P = 0.02). However, daytime diastolic BP was increased only in the ET-CO group (+3.4 +/- 1.2 mmHg, P=0.04), and did not change in any other groups. No significant effect was found in ambulatory heart rate. In conclusion, aerobic training abolished the increase of daytime ambulatory BP induced by estrogen therapy in hysterectomized, healthy, normotensive and postmenopausal women. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study was designed to test the hypothesis that subjects having faster oxygen uptake (VO(2)) kinetics during off-transients to exercises of severe intensity would obtain the smallest decrement score during a repeated sprint test. Twelve male soccer players completed a graded test, two severe-intensity exercises, followed by 6 min of passive recovery, and a repeated sprint test, consisting of seven 30-m sprints alternating with 20 s of active recovery. The relative decrease in score during the repeated sprint test was positively correlated with time constants of the primary phase for the VO(2) off-kinetics (r = 0.85; p < 0.001) and negatively correlated with the VO(2) peak (r = -0.83; p < 0.001). These results strengthen the link found between VO(2) kinetics and the ability to maintain sprint performance during repeated sprints.
Resumo:
The objective of this study was to verify the effect of the exercise mode on slow component of VO(2) (VO(2)SC) in children aged 11-12 years during severe-intensity exercise. After determination of the lactate threshold (LT) and peak VO(2) (VO(2)peak) in both cycling (CE) and running exercise (TR), fourteen active boys completed a series of "square-wave" transitions of 6-min duration at 75%Delta [75%Delta = LT + 0.75 X (VO(2)peak-LT)l to determine the VO(2) kinetics. The VO(2)SC was significantly higher in CE (180.5 +/- 155.8 ml . min(-1)) than in TR (113.0 +/- 84.2 ml . min(-1)). We can conclude that, although a VO(2)SC does indeed develop during TR in children, its magnitude is considerably lower than in CE during severe-intensity exercise.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)