958 resultados para VLSI architectures
Resumo:
The real time implementation of an efficient signal compression technique, Vector Quantization (VQ), is of great importance to many digital signal coding applications. In this paper, we describe a new family of bit level systolic VLSI architectures which offer an attractive solution to this problem. These architectures are based on a bit serial, word parallel approach and high performance and efficiency can be achieved for VQ applications of a wide range of bandwidths. Compared with their bit parallel counterparts, these bit serial circuits provide better alternatives for VQ implementations in terms of performance and cost. © 1995 Kluwer Academic Publishers.
Resumo:
A number of high-performance VLSI architectures for real-time image coding applications are described. In particular, attention is focused on circuits for computing the 2-D DCT (discrete cosine transform) and for 2-D vector quantization. The former circuits are based on Winograd algorithms and comprise a number of bit-level systolic arrays with a bit-serial, word-parallel input. The latter circuits exhibit a similar data organization and consist of a number of inner product array circuits. Both circuits are highly regular and allow extremely high data rates to be achieved through extensive use of parallelism.
Resumo:
In real time digital signal processing, high performance modules for division and square root are essential if many powerful algorithms are to be implemented. In this paper, a new radix 2 algorithms for SRT division and square root are developed. For these new schemes, the result digits and the residuals are computed concurrently and the computations in adjacent rows are overlapped. Consequently, their performance should exceed that of the radix 2 SRT methods. VLSI array architectures to implement the new division and square root schemes are also presented.
Resumo:
A novel most significant digit first CORDIC architecture is presented that is suitable for the VLSI design of systolic array processor cells for performing QR decomposition. This is based on an on-line CORDIC algorithm with a constant scale factor and a latency independent of the wordlength. This has been derived through the extension of previously published CORDIC algorithms. It is shown that simplifying the calculation of convergence bounds also greatly simplifies the derivation of suitable VLSI architectures. Design studies, based on a 0.35-µ CMOS standard cell process, indicate that 20 such QR processor cells operating at rates suitable for radar beamfoming can be readily accommodated on a single chip.
Resumo:
El treball desenvolupat en aquesta tesi aprofundeix i aporta solucions innovadores en el camp orientat a tractar el problema de la correspondència en imatges subaquàtiques. En aquests entorns, el que realment complica les tasques de processat és la falta de contorns ben definits per culpa d'imatges esborronades; un fet aquest que es deu fonamentalment a il·luminació deficient o a la manca d'uniformitat dels sistemes d'il·luminació artificials. Els objectius aconseguits en aquesta tesi es poden remarcar en dues grans direccions. Per millorar l'algorisme d'estimació de moviment es va proposar un nou mètode que introdueix paràmetres de textura per rebutjar falses correspondències entre parells d'imatges. Un seguit d'assaigs efectuats en imatges submarines reals han estat portats a terme per seleccionar les estratègies més adients. Amb la finalitat d'aconseguir resultats en temps real, es proposa una innovadora arquitectura VLSI per la implementació d'algunes parts de l'algorisme d'estimació de moviment amb alt cost computacional.
Resumo:
The use of Multiple Input Multiple Output (MIMO) systems has permitted the recent evolution of wireless communication standards. The Spatial Multiplexing MIMO technique, in particular, provides a linear gain at the transmission capacity with the minimum between the numbers of transmit and receive antennas. To obtain a near capacity performance in SM-MIMO systems a soft decision Maximum A Posteriori Probability MIMO detector is necessary. However, such detector is too complex for practical solutions. Hence, the goal of a MIMO detector algorithm aimed for implementation is to get a good approximation of the ideal detector while keeping an acceptable complexity. Moreover, the algorithm needs to be mapped to a VLSI architecture with small area and high data rate. Since Spatial Multiplexing is a recent technique, it is argued that there is still much room for development of related algorithms and architectures. Therefore, this thesis focused on the study of sub optimum algorithms and VLSI architectures for broadband MIMO detector with soft decision. As a result, novel algorithms have been developed starting from proposals of optimizations for already established algorithms. Based on these results, new MIMO detector architectures with configurable modulation and competitive area, performance and data rate parameters are here proposed. The developed algorithms have been extensively simulated and the architectures were synthesized so that the results can serve as a reference for other works in the area
Resumo:
A systematic design methodology is described for the rapid derivation of VLSI architectures for implementing high performance recursive digital filters, particularly ones based on most significant digit (msd) first arithmetic. The method has been derived by undertaking theoretical investigations of msd first multiply-accumulate algorithms and by deriving important relationships governing the dependencies between circuit latency, levels of pipe-lining and the range and number representations of filter operands. The techniques described are general and can be applied to both bit parallel and bit serial circuits, including those based on on-line arithmetic. The method is illustrated by applying it to the design of a number of highly pipelined bit parallel IIR and wave digital filter circuits. It is shown that established architectures, which were previously designed using heuristic techniques, can be derived directly from the equations described.
Resumo:
The Artificial Neural Networks (ANNs) are being used to solve a variety of problems in pattern recognition, robotic control, VLSI CAD and other areas. In most of these applications, a speedy response from the ANNs is imperative. However, ANNs comprise a large number of artificial neurons, and a massive interconnection network among them. Hence, implementation of these ANNs involves execution of computer-intensive operations. The usage of multiprocessor systems therefore becomes necessary. In this article, we have presented the implementation of ART1 and ART2 ANNs on ring and mesh architectures. The overall system design and implementation aspects are presented. The performance of the algorithm on ring, 2-dimensional mesh and n-dimensional mesh topologies is presented. The parallel algorithm presented for implementation of ART1 is not specific to any particular architecture. The parallel algorithm for ARTE is more suitable for a ring architecture.
Resumo:
The use of delayed coefficient adaptation in the least mean square (LMS) algorithm has enabled the design of pipelined architectures for real-time transversal adaptive filtering. However, the convergence speed of this delayed LMS (DLMS) algorithm, when compared with that of the standard LMS algorithm, is degraded and worsens with increase in the adaptation delay. Existing pipelined DLMS architectures have large adaptation delay and hence degraded convergence speed. We in this paper, first present a pipelined DLMS architecture with minimal adaptation delay for any given sampling rate. The architecture is synthesized by using a number of function preserving transformations on the signal flow graph representation of the DLMS algorithm. With the use of carry-save arithmetic, the pipelined architecture can support high sampling rates, limited only by the delay of a full adder and a 2-to-1 multiplexer. In the second part of this paper, we extend the synthesis methodology described in the first part, to synthesize pipelined DLMS architectures whose power dissipation meets a specified budget. This low-power architecture exploits the parallelism in the DLMS algorithm to meet the required computational throughput. The architecture exhibits a novel tradeoff between algorithmic performance (convergence speed) and power dissipation. (C) 1999 Elsevier Science B.V. All rights resented.