978 resultados para VISUAL DEFICITS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Refractive error is defined as the inability of the eye to bring parallel rays of light into focus on the retina, resulting in nearsightedness (myopia), farsightedness (Hyperopia) or astigmatism. Uncorrected refractive error in children is associated with increased morbidity and reduced educational opportunities. Vision screening (VS) is a method for identifying children with visual impairment or eye conditions likely to lead to visual impairment. Objective: To analyze the utility of vision screening conducted by teachers and to contribute to a better estimation of the prevalence of childhood refractive errors in Apurimac, Peru. Design: A pilot vision screening program in preschool (Group I) and elementary school children (Group II) was conducted with the participation of 26 trained teachers. Children whose visual acuity was<6/9 [20/30] (Group I) and≤6/9 (Group II) in one or both eyes, measured with the Snellen Tumbling E chart at 6 m, were referred for a comprehensive eye exam. Specificity and positive predictive value to detect refractive error were calculated against clinical examination. Program assessment with participants was conducted to evaluate outcomes and procedures. Results: A total sample of 364 children aged 3–11 were screened; 45 children were examined at Centro Oftalmológico Monseñor Enrique Pelach (COMEP) Eye Hospital. Prevalence of refractive error was 6.2% (Group I) and 6.9% (Group II); specificity of teacher vision screening was 95.8% and 93.0%, while positive predictive value was 59.1% and 47.8% for each group, respectively. Aspects highlighted to improve the program included extending training, increasing parental involvement, and helping referred children to attend the hospital. Conclusion: Prevalence of refractive error in children is significant in the region. Vision screening performed by trained teachers is a valid intervention for early detection of refractive error, including screening of preschool children. Program sustainability and improvements in education and quality of life resulting from childhood vision screening require further research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developmental learning disabilities such as dyslexia and dyscalculia have a high rate of co-occurrence in pediatric populations, suggesting that they share underlying cognitive and neurophysiological mechanisms. Dyslexia and other developmental disorders with a strong heritable component have been associated with reduced sensitivity to coherent motion stimuli, an index of visual temporal processing on a millisecond time-scale. Here we examined whether deficits in sensitivity to visual motion are evident in children who have poor mathematics skills relative to other children of the same age. We obtained psychophysical thresholds for visual coherent motion and a control task from two groups of children who differed in their performance on a test of mathematics achievement. Children with math skills in the lowest 10% in their cohort were less sensitive than age-matched controls to coherent motion, but they had statistically equivalent thresholds to controls on a coherent form control measure. Children with mathematics difficulties therefore tend to present a similar pattern of visual processing deficit to those that have been reported previously in other developmental disorders. We speculate that reduced sensitivity to temporally defined stimuli such as coherent motion represents a common processing deficit apparent across a range of commonly co-occurring developmental disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the hypothesis that the differences in performance between developmental dyslexics and controls on visual tasks are specific for the detection of dynamic stimuli. We found that dyslexics were less sensitive than controls to coherent motion in dynamic random dot displays. However, their sensitivity to control measures of static visual form coherence was not significantly different from that of controls. This dissociation of dyslexics' performance on measures that are suggested to tap the sensitivity of different extrastriate visual areas provides evidence for an impairment specific to the detection of dynamic properties of global stimuli, perhaps resulting from selective deficits in dorsal stream functions. © 2001 Lippincott Williams & Wilkins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Presence of neurophysiological abnormalities in dyslexia has been a conflicting issue. This study was performed to evaluate the role of sensory visual deficits in the pathogenesis of dyslexia. Methods: Pattern visual evoked potentials (PVEP) were recorded in 72 children including 36 children with dyslexia and 36 children without dyslexia (controls) who were matched for age, sex and intelligence. Two check sizes of 15 and 60 min of arc were used with temporal frequencies of 1.5 Hz for transient and 6 Hz for steady‑state methods. Results: Mean latency and amplitude values for 15 min arc and 60 min arc check sizes using steady state and transient methods showed no significant difference between the two study groups (P values: 0.139/0.481/0.356/0.062).Furthermore, no significant difference was observed between two methods of PVEPs in dyslexic and normal children using 60min arc with high contrast(Pvalues: 0.116, 0.402, 0.343 and 0.106). Conclusion: The sensitivity of PVEP has high validity to detect visual deficits in children with dyslexic problem. However, no significant difference was found between dyslexia and normal children using high contrast stimuli.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Amnesia typically results from trauma to the medial temporal regions that coordinate activation among the disparate areas of cortex that represent the information that make up autobiographical memories. We proposed that amnesia should also result from damage to these regions, particularly regions that subserve long-term visual memory [Rubin, D. C., & Greenberg, D. L. (1998). Visual memory-deficit amnesia: A distinct amnesic presentation and etiology. Proceedings of the National Academy of Sciences of the USA, 95, 5413-5416]. We previously found 11 such cases in the literature, and all 11 had amnesia. We now present a detailed investigation of one of these patients. M.S. suffers from long-term visual memory loss along with some semantic deficits; he also manifests a severe retrograde amnesia and moderate anterograde amnesia. The presentation of his amnesia differs from that of the typical medial-temporal or lateral-temporal amnesic; we suggest that his visual deficits may be contributing to his autobiographical amnesia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multiple system atrophy (MSA) is a rare movement disorder and a member of the 'parkinsonian syndromes', which also include Parkinson's disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). Multiple system atrophy is a complex syndrome, in which patients exhibit a variety of signs and symptoms, including parkinsonism, ataxia and autonomic dysfunction. It can be difficult to separate MSA from the other parkinsonian syndromes but if ocular signs and symptoms are present, they may aid differential diagnosis. Typical ocular features of MSA include blepharospasm, excessive square-wave jerks, mild to moderate hypometria of saccades, impaired vestibular-ocular reflex (VOR), nystagmus and impaired event-related evoked potentials. Less typical features include slowing of saccadic eye movements, the presence of vertical gaze palsy, visual hallucinations and an impaired electroretinogram (ERG). Aspects of primary vision such as visual acuity, colour vision or visual fields are usually unaffected. Management of the disease to deal with problems of walking, movement, daily tasks and speech problems is important in MSA. Optometrists can work in collaboration with the patient and health-care providers to identify and manage the patient's visual deficits. A more specific role for the optometrist is to correct vision to prevent falls and to monitor the anterior eye to prevent dry eye and control blepharospasm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis investigates the visual deficits associated with developmental dyslexia, particularly that of visual attention. Visual attention has previously been investigated in a wide array of behavioural and psychophysical (amongst others) studies but not many have produced consistent findings. Attention processes are believed to play an integral part in depicting the overall "extent" of reading deficits in dyslexia, so it was of paramount importance to aim at such attention mechanisms in this research. The experiments in this thesis focused on signal enhancement and noise (distractor) exclusion. Given the flexibility of the visual search paradigms employed in this research, factors such as visual crowding and attention distribution was also investigated. The experiments systematically manipulated noise (by increasing distractor count, i.e. set-size), crowding (varying the spacing between distractors), attention allocation (use of peripheral cues to direct attention), and attention distribution (influence of one visual field over the other), all of which were tied to a critical factor, the "location/spatial/decisional uncertainty". Adults with dyslexia were: (i) able to modulate attention appropriately using peripheral pre-cues, (ii) severely affected by crowding, and (iii) unable to counteract increased set-sizes when post or un-cued, the latter signifying poor distractor (noise) suppression. By controlling for location uncertainty, the findings confirmed that adults with dyslexia were yet again affected by crowding and set-size, in addition to an asymmetric attention distribution. Confounding effects of ADHD symptoms did not explain a significant independent variance in performance, suggesting that the difficulty shown by adult dyslexics were not accounted for by co-morbid ADHD. Furthermore, the effects of crowding, set-size and asymmetric attention correlated significantly with literacy, but not ADHD measures. It is believed that a more diffuse and an asymmetric attention system (in dyslexia) to be the limiting factor concerning noise exclusion and attention distribution. The findings from this thesis add to the current understanding of the potential role of deficits in visual attention in dyslexia and in the literacy difficulties experienced by this population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Visual abnormalities, both at the sensory input and the higher interpretive levels, have been associated with many of the symptoms of schizophrenia. Individuals with schizophrenia typically experience distortions of sensory perception, resulting in perceptual hallucinations and delusions that are related to the observed visual deficits. Disorganised speech, thinking and behaviour are commonly experienced by sufferers of the disorder, and have also been attributed to perceptual disturbances associated with anomalies in visual processing. Compounding these issues are marked deficits in cognitive functioning that are observed in approximately 80% of those with schizophrenia. Cognitive impairments associated with schizophrenia include: difficulty with concentration and memory (i.e. working, visual and verbal), an impaired ability to process complex information, response inhibition and deficits in speed of processing, visual and verbal learning. Deficits in sustained attention or vigilance, poor executive functioning such as poor reasoning, problem solving, and social cognition, are all influenced by impaired visual processing. These symptoms impact on the internal perceptual world of those with schizophrenia, and hamper their ability to navigate their external environment. Visual processing abnormalities in schizophrenia are likely to worsen personal, social and occupational functioning. Binocular rivalry provides a unique opportunity to investigate the processes involved in visual awareness and visual perception. Binocular rivalry is the alternation of perceptual images that occurs when conflicting visual stimuli are presented to each eye in the same retinal location. The observer perceives the opposing images in an alternating fashion, despite the sensory input to each eye remaining constant. Binocular rivalry tasks have been developed to investigate specific parts of the visual system. The research presented in this Thesis provides an explorative investigation into binocular rivalry in schizophrenia, using the method of Pettigrew and Miller (1998) and comparing individuals with schizophrenia to healthy controls. This method allows manipulations to the spatial and temporal frequency, luminance contrast and chromaticity of the visual stimuli. Manipulations to the rival stimuli affect the rate of binocular rivalry alternations and the time spent perceiving each image (dominance duration). Binocular rivalry rate and dominance durations provide useful measures to investigate aspects of visual neural processing that lead to the perceptual disturbances and cognitive dysfunction attributed to schizophrenia. However, despite this promise the binocular rivalry phenomenon has not been extensively explored in schizophrenia to date. Following a review of the literature, the research in this Thesis examined individual variation in binocular rivalry. The initial study (Chapter 2) explored the effect of systematically altering the properties of the stimuli (i.e. spatial and temporal frequency, luminance contrast and chromaticity) on binocular rivalry rate and dominance durations in healthy individuals (n=20). The findings showed that altering the stimuli with respect to temporal frequency and luminance contrast significantly affected rate. This is significant as processing of temporal frequency and luminance contrast have consistently been demonstrated to be abnormal in schizophrenia. The current research then explored binocular rivalry in schizophrenia. The primary research question was, "Are binocular rivalry rates and dominance durations recorded in participants with schizophrenia different to those of the controls?" In this second study binocular rivalry data that were collected using low- and highstrength binocular rivalry were compared to alternations recorded during a monocular rivalry task, the Necker Cube task to replicate and advance the work of Miller et al., (2003). Participants with schizophrenia (n=20) recorded fewer alternations (i.e. slower alternation rates) than control participants (n=20) on both binocular rivalry tasks, however no difference was observed between the groups on the Necker cube task. Magnocellular and parvocellular visual pathways, thought to be abnormal in schizophrenia, were also investigated in binocular rivalry. The binocular rivalry stimuli used in this third study (Chapter 4) were altered to bias the task for one of these two pathways. Participants with schizophrenia recorded slower binocular rivalry rates than controls in both binocular rivalry tasks. Using a ‘within subject design’, binocular rivalry data were compared to data collected from a backwardmasking task widely accepted to bias both these pathways. Based on these data, a model of binocular rivalry, based on the magnocellular and parvocellular pathways that contribute to the dorsal and ventral visual streams, was developed. Binocular rivalry rates were compared with performance on the Benton’s Judgment of Line Orientation task, in individuals with schizophrenia compared to healthy controls (Chapter 5). The Benton’s Judgment of Line Orientation task is widely accepted to be processed within the right cerebral hemisphere, making it an appropriate task to investigate the role of the cerebral hemispheres in binocular rivalry, and to investigate the inter-hemispheric switching hypothesis of binocular rivalry proposed by Pettigrew and Miller (1998, 2003). The data were suggestive of intra-hemispheric rather than an inter-hemispheric visual processing in binocular rivalry. Neurotransmitter involvement in binocular rivalry, backward masking and Judgment of Line Orientation in schizophrenia were investigated using a genetic indicator of dopamine receptor distribution and functioning; the presence of the Taq1 allele of the dopamine D2 receptor (DRD2) receptor gene. This final study (Chapter 6) explored whether the presence of the Taq1 allele of the DRD2 receptor gene, and thus, by inference the distribution of dopamine receptors and dopamine function, accounted for the large individual variation in binocular rivalry. The presence of the Taq1 allele was associated with slower binocular rivalry rates or poorer performance in the backward masking and Judgment of Line Orientation tasks seen in the group with schizophrenia. This Thesis has contributed to what is known about binocular rivalry in schizophrenia. Consistently slower binocular rivalry rates were observed in participants with schizophrenia, indicating abnormally-slow visual processing in this group. These data support previous studies reporting visual processing abnormalities in schizophrenia and suggest that a slow binocular rivalry rate is not a feature specific to bipolar disorder, but may be a feature of disorders with psychotic features generally. The contributions of the magnocellular or dorsal pathways and parvocellular or ventral pathways to binocular rivalry, and therefore to perceptual awareness, were investigated. The data presented supported the view that the magnocellular system initiates perceptual awareness of an image and the parvocellular system maintains the perception of the image, making it available to higher level processing occurring within the cortical hemispheres. Abnormal magnocellular and parvocellular processing may both contribute to perceptual disturbances that ultimately contribute to the cognitive dysfunction associated with schizophrenia. An alternative model of binocular rivalry based on these observations was proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A tireoide sintetiza a tiroxina (T4) e a 3,5,3’-triiodotironina (T3), ambos hormônios apresentam uma função crucial no desenvolvimento do sistema nervoso central, incluindo o sistema visual e a retina. A diminuição dos níveis sanguíneos do T3 e T4 ocasionam uma síndrome denominada de hipotireoidismo, o que pode levar à prejuízos visuais. Os déficits visuais gerados pelo hipotireoidismo estão diretamente relacionados ao período de desenvolvimento do indivíduo. Foi demonstrado em modelos murinos que o hipotireoidismo congênito diminui a espessura da retina, o número de células, e interfere na diferenciação da subpopulação de cones M. Desta forma buscaremos investigar possíveis alterações funcionais na retina de ratos wistar jovens após a tireoidectomia bilateral, utilizando respostas eletrofisiológicas não invasivas. Para tanto, dividimos os ratos em três grupos (controle, sham e tireoidectomizado) cada um contendo ≥ 8 animais. As cirurgias foram realizadas 30 dias pós-natal. Os eletrorretinogramas de campo total foram realizados 10, 15, 20, 25 e 30 dias após a cirurgia, utilizando protocolos para avaliar a resposta escotópica máxima, resposta fotópica (com e sem o uso de filtros de luz) e a resposta ao flicker (12, 15, 18 e 30 Hz). Os parâmetros analisados foram o tempo implícito e a amplitude das ondas a e b. Além disso, realizamos o monitoramento dos parâmetros clínicos dos animais, visando identificar características que indiquem um quadro de hipotireoidismo, bem como a dosagem dos hormônios tireoidianos. Os resultados obtidos demonstraram que em todos dos protocolos de estimulação utilizados no ERG houve diminuição nas amplitudes das ondas a e b nos animais tireoidectomizados em todos os dias avaliados após a cirurgia, quando comparados com animais do grupo controle e sham. Os resultados da avaliação do tempo implícito para ambas as ondas não demonstraram diferença estatística quando comparamos os diversos grupos ao controle. Também podemos constatar uma redução do ganho de peso e tamanho nos animais que sofreram tireoidectomia, associados à redução dos níveis de hormônio tireoidiano (T3). Concluímos dessa forma que os hormônios tireoidianos estão diretamente ligados a alterações funcionais na retina dos animais que sofreram tireoidectomia, bem com, na redução da aquisição de peso e aumento de tamanho.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The fiber dissection technique provides unique 3-dimensional anatomic knowledge of the white matter. OBJECTIVE: To examine the optic radiation anatomy and its important relationship with the temporal stem and to discuss its findings in relation to the approaches to temporal lobe lesions. METHODS: We studied 40 cerebral hemispheres of 20 brains that had been fixed in formalin solution for 40 days. After removal of the arachnoid membrane, the hemispheres were frozen, and the Klingler technique was used for dissection under magnification. Stereoscopic 3-dimensional images of the dissection were obtained for illustration. RESULTS: The optic radiations are located deep within the superior and middle temporal gyri, always above the inferior temporal sulcus. The mean distance between the cortical surface and the lateral edge of the optic radiation was 21 mm. Its fibers are divided into 3 bundles after their origin. The mean distance between the anterior tip of the temporal horn and the Meyer loop was 4.5 mm, between the temporal pole and the anterior border of the Meyer loop was 28.4 mm, and between the limen insulae and the Meyer loop was 10.7 mm. The mean distance between the lateral geniculate body and the lateral margin of the central bundle of the optic radiation was 17.4 mm. CONCLUSION: The white matter fiber dissection reveals the tridimensional intrinsic architecture of the brain, and its knowledge regarding the temporal lobe is particularly important for the neurosurgeon, mostly because of the complexity of the optic radiation and related fibers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE. Strabismic amblyopia is typically associated with several visual deficits, including loss of contrast sensitivity in the amblyopic eye and abnormal binocular vision. Binocular summation ratios (BSRs) are usually assessed by comparing contrast sensitivity for binocular stimuli (sens BIN) with that measured in the good eye alone (sensGOOD), giving BSR = sensBIN/sensGOOD. This calculation provides an operational index of clinical binocular function, but does not assess whether neuronal mechanisms for binocular summation of contrast remain intact. This study was conducted to investigate this question. METHODS. Horizontal sine-wave gratings were used as stimuli (3 or 9 cyc/deg; 200 ms), and the conventional method of assessment (above) was compared with one in which the contrast in the amblyopic eye was adjusted (normalized) to equate monocular sensitivities. RESULTS. In nine strabismic amblyopes (mean age, 32 years), the results confirmed that the BSR was close to unity when the conventional method was used (little or no binocular advantage), but increased to approximately √2 or higher when the normalization method was used. The results were similar to those for normal control subjects (n = 3; mean age, 38 years) and were consistent with the physiological summation of contrast between the eyes. When the normal observers performed the experiments with a neutral-density (ND) filter in front of one eye, their performance was similar to that of the amblyopes in both methods of assessment. CONCLUSIONS. The results indicate that strabismic amblyopes have mechanisms for binocular summation of contrast and that the amblyopic deficits of binocularity can be simulated with an ND filter. The implications of these results for best clinical practice are discussed. Copyright © Association for Research in Vision and Ophthalmology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contrast susceptibility is defined as the difference in visual acuity recorded for high and low contrast optotypes. Other researchers refer to this parameter as "normalised low contrast acuity". Pilot surveys have revealed that contrast susceptibility deficits are more strongly related to driving accident involvement than are deficits in high contrast visual acuity. It has been hypothesised that driving situation avoidance is purely based upon high contrast visual acuity. Hence, the relationship between high contrast visual acuity and accidents is masked by situation avoidance whilst drivers with contrast susceptibility deficits remain prone to accidents in poor visibility conditions. A national survey carried out to test this hypothesis provided no support for either the link between contrast susceptibility deficits and accidents involvement or the proposed hypothesis. Further, systematically worse contrast susceptibility scores emerged from vision screeners compared to wall mounted test charts. This discrepancy was not due to variations in test luminance or instrument myopia. Instead, optical imperfections inherent in vision screeners were considered to be responsible. Although contrast susceptibility is unlikely to provide a useful means of screening drivers' vision, previous research does provide support for its ability to detect visual deficits that may influence everyday tasks. In this respect, individual contrast susceptibility variations were found to reflect variations in the contrast sensitivity function - a parameter that provides a global estimate of human contrast sensitivity.