978 resultados para VISIBLE UP-CONVERSION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Up-conversion luminescence characteristics under 975 nm excitation have been investigated with Tb3+/Tm3+/Yb3+ triply doped tellurite glasses. Here, green (547 nm: D-5(4) --> F-7(4)) and red (660 nm: D-5(4) --> F-7(2)) up-conversion (UC) luminescence originating from Tb3+ is observed strongly, because of the quadratic dependences of emission intensities on the excitation power. Especially, the UC luminescence was intensified violently with the energy transfer from the Tm3+ ions involves in the Tb3+ excitation. To the Tb3+/Tm3+/Yb3+ triply doped glass system, a novel up-conversion mechanism is proposed as follows: the energy of (3)G(4) level (Tm3+) was transferred to D-5(4) (Tb3+) and the 477-nm UC luminescence of Tm3+ was nearly quenched. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Er3+-Yb3+ codoped Al2O3 has been prepared by the sol-gel method using the aluminium isopropoxide [Al(OC3H7)(3)]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)(3) center dot 5H(2)O] and ytterbium nitrate [Yb(NO3)(3) center dot 5H(2)O]. The phase structure, including only two crystalline types of doped Al2O3 phases, theta and gamma, was obtained for the 1 mol% Er3+ and 5 mol% Yb3+ codoped Al2O3 at the sintering temperature of 1,273 K. By a 978 nm semiconductor laser diodes excitation, the visible up-conversion emissions centered at about 523, 545, and 660 nm were obtained. The temperature dependence of the green up-conversion emissions was studied over a wide temperature range of 300-825 K, and the reasonable agreement between the calculated temperature by the fluorescence intensity ratio (FIR) theory and the measured temperature proved that Er3+-Yb3+ codoped Al2O3 plays an important role in the application of high temperature sensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Er(3)Al(5)O(12) phosphor powders were prepared using the solution combustion method. Formation and homogeneity of the Er(3)Al(5)O(12) phosphor powders have been verified by X-ray diffraction and energy-dispersive X-ray analysis respectively. The frequency up-conversion from Er(3)Al(5)O(12) phosphor powder corresponding to the (2)H(9/2) -> (4)I(15/2), (2)H(11/2) -> (4)I(15/2), (4)S(3/2) -> (4)I(15/2), (4)F(9/2) -> (4)I(15/2) and the infrared emission (IR) due to the (4)I(13/2) -> (4)I(15/2) transitions lying at similar to 410, similar to 524, similar to 556, 645-680 nm and at similar to 1.53 mu m respectively upon excitation with a Ti-Sapphire pulsed/CW laser have been reported. The mechanism responsible for the frequency up-conversion and IR emission is discussed in detail. Defect centres induced by radiation were studied using the techniques of thermoluminescence and electron spin resonance. A single glow peak at 430A degrees C is observed and the thermoluminescence results show the presence of a defect center which decays at high temperature. Electron spin resonance studies indicate a center characterized by a g-factor equal to 2.0056 and it is observed that this center is not related to the thermoluminescence peak. A negligibly small concentration of cation and anion vacancies appears to be present in the phosphor in accordance with the earlier theoretical predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er(3+) doped Y(2)O(3) phosphor was prepared by the solution combustion method and characterized using powder x-ray diffraction and energy-dispersive analysis of x-ray mapping studies. Room temperature near infrared (NIR) to green up-conversion (UC) emissions in the region 520-580 nm {((2)H(11/2), (4)S(3/2)) -> (4)I(15/2)} and red UC emissions in the region 650-700 nm ((4)F(9/2) -> (4)I(15/2)) of Er(3+) ions have been observed upon direct excitation to the (4)I(11/2) level using similar to 972 nm laser radiation of nanosecond pulses. The possible mechanisms for the UC processes have been discussed on the basis of the energy level scheme, the pump power dependence as well as based on the temporal evolution. The excited state absorption is observed to be the dominant mechanism for the UC process. Y(2)O(3) : Er exhibits one thermally stimulated luminescence (TSL) peak around 367 degrees C. Electron spin resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the centres responsible for the TSL peak. Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of at least three distinct centres. One of them (centre I) with principal g-values g(parallel to) = 2.0415 and g(perpendicular to) = 2.0056 is identified as O(2)(-) centre while centre II with an isotropic g-factor 2.0096 is assigned to an F(+)-centre (singly ionized oxygen vacancy). Centre III is also assigned to an F(+)-centre with a small g-factor anisotropy (g(parallel to) = 1.974 and g(perpendicular to) = 1.967). Additional defect centres are observed during thermal annealing experiments and one of them appearing around 330 degrees C grows with the annealing temperature. This centre (assigned to an F(+)-centre) seems to originate from an F-centre (oxygen vacancy with two electrons) and the F-centre appears to correlate with the observed TSL peak in Y2O3 : Er phosphor. The trap depth for this peak has been determined to be 0.97 eV from TSL data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erbium Er3+ and ytterbium Yb3+ codoped fluoro-phosphate glasses belonging to the system NaPO3-YF 3-BaF2-CaF2 have been prepared by the classical melt-quenching technique. Glasses containing up to 10 wt% of erbium and ytterbium fluorides have been obtained and characterized using differential scanning calorimetry (DSC) and UV-visible and near-infrared spectroscopy. Transparent and homogeneous glass-ceramics have been then reproducibly synthetized by appropriate heat treatment above glass transition temperature of a selected parent glass. Structural investigations of the crystallization performed through X-ray diffractometry (XRD) and scanning electron microscopy (SEM) have evidenced the formation of fluorite-type cubic crystals based during the devitrification process. Finally, infrared to visible up-conversion emission upon excitation at 975 nm has been studied on the Er3+ and Yb 3+ codoped glass-ceramics as a function of thermal treatment time. A large enhancement of intensity of the up-conversion emissions-about 150 times- has been observed in the glass-ceramics if compared to the parent glass one, suggesting an incorporation of the rare-earth ions (REI) into the crystalline phase. © 2012 The American Ceramic Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multicolor and white light emissions have been achieved in Yb3+, Tm3+ and Ho3+ triply doped heavy metal oxide glasses upon laser excitation at 980 nm. The red (660 nm), green (547 nm) and blue (478 nm) up conversion emissions of the rare earth (RE) ions triply doped TeO2-GeO2-Bi2O3-K2O glass (TGBK) have been investigated as a function of the RE concentration and excitation power of the 980 nm laser diode. The most appropriate combination of RE in the TGBK glass host (1.6 wt% Yb2O3, 0.6 wt% Tm2O3 and 0.1 wt% Ho2O3) has been determined with the purpose to tune the primary colors (RGB) respective emissions and generate white light emission by varying the pump power. The involved infrared to visible up conversion mechanisms mainly consist in a three-photon blue up conversion of Tm3+ ions and a two-photon green and red up conversions of Ho3+ ions. The resulting multicolor emissions have been described according to the CIE-1931 standards. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This manuscript reports the first example of up-conversion properties involving Yb3+ and Tb3+ ions in five isostructural Lanthanide-Organic Frameworks (LnOFs), herein designated as UCMarker-1 to UCMarker-5, respectively, and their application as optical probes for the identification of gunshot residues (GSRs) and the ammunition encryption procedure. The excitation of the Yb3+2 F-7/2 <-> F-2(5/2) transition (980 nm) at room temperature leads to visible up-conversion (UC) emission of Tb3+ D-5(4) -> F-7(J). The GSR and lead-free primer residues are easily identified upon UV radiation (lambda = 254 nm). These results prove that the exploration of LnOFs to identify GSR is attractive for the identification of ammunition origins or caliber recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work deals with the structural and efficient down-shifting (DS) and up-conversion (UC) luminescence properties of erbium ion (Er3+) doped nanocrystalline barium sodium niobate (Ba2Na1-3xErxNb5O15, where x = 0, 0.02, 0.04 and 0.06) powders synthesized via novel citrate-based sol-gel route. The monophasic nature of the title compound was confirmed via x-ray powder diffraction followed by FT-IR studies. High-resolution transmission electron microscopy (HRTEM) facilitated the establishment of the nanocrystalline phase and the morphology of the crystallites. The Kubelka-Munk function, based on diffused reflectance studies and carried out on nano-sized crystallites, was employed to obtain the optical band-gap. The synthesized nanophosphor showed efficient DS/PL-photoluminescence and UC luminescence properties, which have not yet been reported so far in this material. The material emits intense DS green emission on excitation with 378 nm radiation. Interestingly, the material gives intense UC emission in the visible region dominated by green emission and relatively weak red emission on 976 nm excitation (NIR laser excitation). Such a dual-mode emitting nanophosphor could be very useful in display devices and for many other applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An optimal feedback control of broadband frequency up-conversion in BBO crystal is experimentally demonstrated by shaping femto-second laser pulses based on genetic algorithm, and the frequency up-conversion efficiency can be enhanced by similar to 16%. SPIDER results show that the optimal laser pulses have shorter pulse-width with the little negative chirp than the original pulse with the little positive chirp. By modulating the fundamental spectral phase with periodic square distribution on SLM-256, the frequency up-conversion can be effectively controlled by the factor of about 17%. The experimental results indicate that the broadband frequency up-conversion efficiency is related to both of second harmonic generation (SHG) and sum frequency generation (SFG), where the former depends on the fundamental pulse intensity, and the latter depends on not only the fundamental pulse intensity but also the fundamental pulse spectral phase. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transparent glass ceramics have been obtained by nucleation and growth of Y2Te6O15 or Er2Te5O13 cubic phase in a new Er3+-doped oxyfluoride tellurite glass. Effect of beat treatment on absorption spectra, luminescence and up-conversion properties in the oxyfluoride tellurite glass has been investigated. With heat treatment the ultraviolet absorption edge red shifted evidently for the oxyfluoride telluride glass. The near infrared emission that corresponds to Er3+:I-4(13/2)-> I-4(15/2) can be significantly enhanced after heat treatment. Under 980 nm LD pumping, red and green up-conversion intensity of Er3+ in the glass ceramic can be observed much stronger than that in the base glass. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the successful preparation and a detailed study on the up-conversion properties of Er3+ -doped TeO2-ZnO-PbCl2 oxylialide tellurite glasses. Three intense emissions centered at around 527, 549 and 666 nm have been clearly observed under 977 nm excitation and the involved mechanisms have been explained. The green emissions centered at 527 and 549 nin are due to the H-2(11/2 ->) I-4(15/2) and S-4(3/2) -> I-4(15/2) transitions, and the red up-conversion emission centered at 666 nm is associated with the F-4(9/2) -> I-4(15/2) transitions of Er3+ ions, respectively. The quadratic dependence of fluorescence on excitation laser power confirm that two-photons contribute to up-conversion of the green-red emissions. (c) 2005 Elsevier B.V. All rights reserved.