889 resultados para VIRAL-INFECTIONS
Resumo:
Using a multidisciplinary approach, Human Respiratory Viral Infections is set at the level between the definitive reference work and an essential clinical manual. Exploring recent advances in human respiratory viral research, the text builds on the basic sciences of epidemiology, virology, molecular biology, and immunology to cover clinical diagnosis, mechanism of pathogenesis, manifestations of disease, impact, treatment, and management strategies.
Resumo:
Infection is a major cause of mortality and morbidity after thoracic organ transplantation. The aim of the present study was to evaluate the infectious complications after lung and heart transplantation, with a special emphasis on the usefulness of bronchoscopy and the demonstration of cytomegalovirus (CMV), human herpes virus (HHV)-6, and HHV-7. We reviewed all the consecutive bronchoscopies performed on heart transplant recipients (HTRs) from May 1988 to December 2001 (n = 44) and lung transplant recipients (LTRs) from February 1994 to November 2002 (n = 472). To compare different assays in the detection of CMV, a total of 21 thoracic organ transplant recipients were prospectively monitored by CMV pp65-antigenemia, DNAemia (PCR), and mRNAemia (NASBA) tests. The antigenemia test was the reference assay for therapeutic intervention. In addition to CMV antigenemia, 22 LTRs were monitored for HHV-6 and HHV-7 antigenemia. The diagnostic yield of the clinically indicated bronchoscopies was 41 % in the HTRs and 61 % in the LTRs. The utility of the bronchoscopy was highest from one to six months after transplantation. In contrast, the findings from the surveillance bronchoscopies performed on LTRs led to a change in the previous treatment in only 6 % of the cases. Pneumocystis carinii and CMV were the most commonly detected pathogens. Furthermore, 15 (65 %) of the P. carinii infections in the LTRs were detected during chemoprophylaxis. None of the complications of the bronchoscopies were fatal. Antigenemia, DNAemia, and mRNAemia were present in 98 %, 72 %, and 43 % of the CMV infections, respectively. The optimal DNAemia cut-off levels (sensitivity/specificity) were 400 (75.9/92.7 %), 850 (91.3/91.3 %), and 1250 (100/91.5 %) copies/ml for the antigenemia of 2, 5, and 10 pp65-positive leukocytes/50 000 leukocytes, respectively. The sensitivities of the NASBA were 25.9, 43.5, and 56.3 % in detecting the same cut-off levels. CMV DNAemia was detected in 93 % and mRNAemia in 61 % of the CMV antigenemias requiring antiviral therapy. HHV-6, HHV-7, and CMV antigenemia was detected in 20 (91 %), 11 (50 %), and 12 (55 %) of the 22 LTRs (median 16, 31, and 165 days), respectively. HHV-6 appeared in 15 (79 %), HHV-7 in seven (37 %), and CMV in one (7 %) of these patients during ganciclovir or valganciclovir prophylaxis. One case of pneumonitis and another of encephalitis were associated with HHV-6. In conclusion, bronchoscopy is a safe and useful diagnostic tool in LTRs and HTRs with a suspected respiratory infection, but the role of surveillance bronchoscopy in LTRs remains controversial. The PCR assay acts comparably with the antigenemia test in guiding the pre-emptive therapy against CMV when threshold levels of over 5 pp65-antigen positive leukocytes are used. In contrast, the low sensitivity of NASBA limits its usefulness. HHV-6 and HHV-7 activation is common after lung transplantation despite ganciclovir or valganciclovir prophylaxis, but clinical manifestations are infrequently linked to them.
Resumo:
The efforts made to develop RNAi-based therapies have led to productive research in the field of infections in humans, such as hepatitis C virus (HCV), hepatitis B virus (HBV), human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), herpetic keratitis, human papillomavirus, or influenza virus. Naked RNAi molecules are rapidly digested by nucleases in the serum, and due to their negative surface charge, entry into the cell cytoplasm is also hampered, which makes necessary the use of delivery systems to exploit the full potential of RNAi therapeutics. Lipid nanoparticles (LNP) represent one of the most widely used delivery systems for in vivo application of RNAi due to their relative safety and simplicity of production, joint with the enhanced payload and protection of encapsulated RNAs. Moreover, LNP may be functionalized to reach target cells, and they may be used to combine RNAi molecules with conventional drug substances to reduce resistance or improve efficiency. This review features the current application of LNP in RNAi mediated therapy against viral infections and aims to explore possible future lines of action in this field.
Resumo:
Rationale: Ex vivo, bronchial epithelial cells from people with asthma are more susceptible to rhinovirus infection caused by deficient induction of the antiviral protein, IFN-b. Exogenous IFN-b restores antiviral activity.
Objectives: To compare the efficacy and safety of inhaled IFN-b with placebo administered to people with asthma after onset of cold symptoms to prevent or attenuate asthma symptoms caused by respiratory viruses.
Methods: A total of 147 people with asthma on inhaled corticosteroids (British Thoracic Society Steps 2–5), with a history of virus-associated exacerbations, were randomized to 14-day treatment with inhaled IFN-b (n = 72) or placebo (n = 75) within 24 hours of developing cold symptoms and were assessed clinically, with relevant samples collected to assess virus infection and antiviral responses.
Measurements and Main Results: A total of 91% of randomized patients developed a defined cold. In this modified intention-to-treat population, asthma symptoms did not get clinically significantly worse
(mean change in six-item Asthma Control Questionnaire ,0.5) and IFN-b treatment had no significant effect on this primary endpoint, although it enhanced morning peak expiratory flow recovery (P = 0.033), reduced the need for additional treatment, and boosted innate immunity as assessed by blood and sputum biomarkers. In an exploratory analysis of the subset ofmore difficult-to-treat, Step 4-5 peoplewith asthma (n = 27 IFN-b; n = 31 placebo), Asthma Control Questionnaire-6 increased significantly on placebo; this was prevented by IFN-b (P = 0.004).
Conclusions: Although the trial did not meet its primary endpoint, it suggests that inhaled IFN-b is a potential treatment for virus-induced deteriorations of asthma in difficult-to-treat people with asthma and supports the needforfurther, adequately powered, trialsin this population. Clinical trial registered with www.clinicaltrials.gov (NCT 01126177).
Resumo:
We report an investigation for 16 bacteria and viruses among 184 children hospitalized with pneumonia in Salvador, Brazil. Etiology was established in 144 (78%) cases. Viral, bacterial, and mixed infections were found in 110 (60%), 77 (42%), and 52 (28%) patients, respectively. Rhinovirus (21%) and Streptococcus pneumoniae (21%) were the most common pathogens. Our results demonstrate the importance of viral and pneumococcal infections among those patients.
Resumo:
Objectives: To compare modes and sources of infection and clinical and biosafety aspects of accidental viral infections in hospital workers and research laboratory staff reported in scientific articles. Methods: PubMed, Google Scholar, ISI Web of Knowledge, Scirus, and Scielo were searched (to December 2008) for reports of accidental viral infections, written in English, Portuguese, Spanish, or German; the authors' personal file of scientific articles and references from the articles retrieved in the initial search were also used. Systematic review was carried out with inclusion criteria of presence of accidental viral infection's cases information, and exclusion criteria of absence of information about the viral etiology, and at least probable mode of infection.Results: One hundred and forty-one scientific articles were obtained, 66 of which were included in the analysis. For arboviruses, 84% of the laboratory infections had aerosol as the source; for alphaviruses alone, aerosol exposure accounted for 94% of accidental infections. of laboratory arboviral infections, 15.7% were acquired percutaneously, whereas 41.6% of hospital infections were percutaneous. For airborne viruses, 81% of the infections occurred in laboratories, with hantavirus the leading causative agent. Aerosol inhalation was implicated in 96% of lymphocytic choriomeningitis virus infections, 99% of hantavirus infections, and 50% of coxsackievirus infections, but infective droplet inhalation was the leading mode of infection for severe acute respiratory syndrome coronavirus and the mucocutaneous mode of infection was involved in the case of infection with influenza B. For blood-borne viruses, 92% of infections occurred in hospitals and 93% of these had percutaneous mode of infection, while among laboratory infections 77% were due to infective aerosol inhalation. Among blood-borne virus infections there were six cases of particular note: three cases of acute hepatitis following hepatitis C virus infection with a short period of incubation, one laboratory case of human immunodeficiency virus infection through aerosol inhalation, one case of hepatitis following hepatitis G virus infection, and one case of fulminant hepatitis with hepatitis B virus infection following exposure of the worker's conjunctiva to hepatitis B virus e antigen-negative patient saliva. of the 12 infections with viruses with preferential mucocutaneous transmission, seven occurred percutaneously, aerosol was implicated as a possible source of infection in two cases, and one atypical infection with Macacine herpesvirus 1 with fatal encephalitis as the outcome occurred through a louse bite. One outbreak of norovirus infection among hospital staff had as its probable mode of infection the ingestion of inocula spread in the environment by fomites.Conclusions: The currently accepted and practiced risk analysis of accidental viral infections based on the conventional dynamics of infection of the etiological agents is insufficient to cope with accidental viral infections in laboratories and to a lesser extent in hospitals, where unconventional modes of infection are less frequently present but still have relevant clinical and potential epidemiological consequences. Unconventional modes of infection, atypical clinical development, or extremely severe cases are frequently present together with high viral loads and high virulence of the agents manipulated in laboratories. In hospitals by contrast, the only possible association of atypical cases is with the individual resistance of the worker. Current standard precaution practices are insufficient to prevent most of the unconventional infections in hospitals analyzed in this study; it is recommended that special attention be given to flaviviruses in these settings. (C) 2011 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Resumo:
Imatinib mesylate (imatinib) is a potent inhibitor of defined tyrosine kinases (TKs) and is effective in the treatment of malignancies characterized by constitutive activation of these TKs such as chronic myeloid leukemia and gastrointestinal stromal tumors. TKs also play an important role in T-cell receptor (TCR) signal transduction. Inhibitory as well as stimulating effects of imatinib on T cells and dendritic cells have been described. Here, we analyzed the effects of imatinib treatment on antiviral immune responses in vivo. Primary cytotoxic T-cell (CTL) responses were not impaired in imatinib-treated mice after infection with lymphocytic choriomeningitis virus (LCMV) or after immunization with a tumor cell line expressing LCMV glycoprotein (LCMV-GP). Similarly, neutralizing antibody responses to vesicular stomatitis virus (VSV) were not affected. In contrast, secondary expansion of LCMV-specific memory CTLs was reduced in vitro and in vivo, resulting in impaired protection against reinfection. In addition, imatinib treatment delayed the onset of diabetes in a CTL-induced diabetes model. In summary, imatinib treatment in vivo selectively inhibits the expansion of antigen-experienced memory CTLs without affecting primary T- or B-cell responses. Therefore, imatinib may be efficacious in the suppression of CTL-mediated immunopathology in autoimmune diseases without the risk of acquiring viral infections.
Resumo:
This paper reviews the current concepts of viral classification, infection and replication. The clinical presentation of common oral viral infections encountered in the dental practice are discussed, including: herpes simplex virus types 1 and 2; Epstein-Barr virus; varicella-zoster virus; Coxsackie virus; human papilloma virus; and human immunodeficiency virus. The diagnosis, principles of management and pharmacological agents available for the treatment of oral viral infections are also discussed.
Resumo:
While much of the genetic variation in RNA viruses arises because of the error-prone nature of their RNA-dependent RNA polymerases, much larger changes may occur as a result of recombination. An extreme example of genetic change is found in defective interfering (DI) viral particles, where large sections of the genome of a parental virus have been deleted and the residual sub-genome fragment is replicated by complementation by co-infecting functional viruses. While most reports of DI particles have referred to studies in vitro, there is some evidence for the presence of DI particles in chronic viral infections in vivo. In this study, short fragments of dengue virus (DENV) RNA containing only key regulatory elements at the 3' and 5' ends of the genome were recovered from the sera of patients infected with any of the four DENV serotypes. Identical RNA fragments were detected in the supernatant from cultures of Aedes mosquito cells that were infected by the addition of sera from dengue patients, suggesting that the sub-genomic RNA might be transmitted between human and mosquito hosts in defective interfering (DI) viral particles. In vitro transcribed sub-genomic RNA corresponding to that detected in vivo could be packaged in virus like particles in the presence of wild type virus and transmitted for at least three passages in cell culture. DENV preparations enriched for these putative DI particles reduced the yield of wild type dengue virus following co-infections of C6-36 cells. This is the first report of DI particles in an acute arboviral infection in nature. The internal genomic deletions described here are the most extensive defects observed in DENV and may be part of a much broader disease attenuating process that is mediated by defective viruses.
Resumo:
Community-acquired pneumonia (CAP) is a common cause of morbidity among children. Evidence on seasonality, especially on the frequency of viral and bacterial causative agents is scarce; such information may be useful in an era of changing climate conditions worldwide. To analyze the frequency of distinct infections, meteorological indicators and seasons in children hospitalized for CAP in Salvador, Brazil, nasopharyngeal aspirate and blood were collected from 184 patients aged < 5 y over a 21-month period. Fourteen microbes were investigated and 144 (78%) cases had the aetiology established. Significant differences were found in air temperature between spring and summer (p = 0.02) or winter (p < 0.001), summer and fall (p = 0.007) or winter (p < 0.001), fall and winter (p = 0.002), and on precipitation between spring and fall (p = 0.01). Correlations were found between: overall viral infections and relative humidity (p = 0.006; r = 0.6) or precipitation (p = 0.03; r = 0.5), parainfluenza and precipitation (p = 0.02; r = -0.5), respiratory syncytial virus (RSV) and air temperature (p = 0.048; r = -0.4) or precipitation (p = 0.045; r = 0.4), adenovirus and precipitation (p = 0.02; r = 0.5), pneumococcus and air temperature (p = 0.04; r = -0.4), and Chlamydia trachomatis and relative humidity (p = 0.02; r = -0.5). The frequency of parainfluenza infection was highest during spring (32.1%; p = 0.005) and that of RSV infection was highest in the fall (36.4%; p < 0.001). Correlations at regular strength were found between several microbes and meteorological indicators. Parainfluenza and RSV presented marked seasonal patterns.