992 resultados para VIBRIO-CHOLERAE NON-O1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incidence of Vibrio cholerae, Aeromonas spp, and Plesiomonas shigelloides was determined in Rater samples from Cambe Stream. The samples were collected from seven different sites. The serogroups, virulence markers and drug resistance profiles were also evaluated. Twelve. Aer. hydrophila, 12 Aer. caviae, eight Aer. sobria, seven Ple. shigelloides and two V. cholerae non-O1 were isolated. They belonged to different serogroups and all produced haemolysis in different assays. Five of the Aeromonas strains and one of V, cholerae non-O1 were positive for enterotoxin activity. Haemagglutination and its inhibition, using erythrocytes of different origins, was variable for Aeromonas spp and V. cholerae, while none of the Plt. shigelloides haemagglutinated in association with any type of erythrocyte. All isolates exhibited multiple drug resistance. These results indicate that the occurrence of V. cholerae non-O1, Aeromonas spp, and Ple. shigelloides, in water used for vegetable irrigation, human recreation and animal consumption, among others, represents a potential risk for humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The annual cycle of Vibrio cholerae in the environment surrounding the Layo aquaculture facility (Ebrié lagoon) was studied from March 1991 to April 1992. Vibrio cholerae counts were coupled with the determination of physical and chemical characteristics of water and the estimation of biological richness of this environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O V.cholerae é um microorganismo autóctone do ambiente aquático e os sorogrupos O1 e O 139 estão ligados a pandemia e epidemia de cólera. Os V.cholerae não O1 e não O139 ou vibrios não aglutinantes (NAGs) estão envolvidos em casos isolados e surtos de diarréia semelhantes à cólera. No decorrer da sétima pandemia houve o surgimento de diversos isolados “El Tor atípicos”. Entre estes se encontra a variante bioquímica do V.cholerae O1 que não fermenta a sacarose no TCBS em 18 a 24 horas que é o tempo de incubação convencional. Neste trabalho foram estudados 138 isolados de V.cholerae O1 e não O1 não fermentador da sacarose no TCBS de procedência clínica e ambiental, obtidos entre 1994 e 1995 na Amazônia Brasileira (Estados do Pará, Amapá e Amazonas). Avaliou-se a fermentação da sacarose no TCBS e em caldo; o perfil de suscetibilidade a oito diferentes antimicrobianos em ágar difusão; a relação clonal entre os V.cholerae O1 e NAG clínicos e ambientais pelo PFGE e a presença de genes de virulência ctxAB e tcpA pela reação em cadeia da polimerase. Observou-se que as amostras de V.cholerae não fermentaram a sacarose em 24 de incubação no ágar TCBS e em caldo, 43% utilizaram a sacarose em 24 horas e 57% a fermentavam tardiamente (tempo superior a 24 horas). Os isolados apresentaram baixo percentual de resistência a antimicrobianos (8,7%) e nenhum caso de multiresistência. Em relação aos genes de virulência, de um modo geral, os isolados de V.cholerae O1 apresentavam o tcpA e o ctxAB. Nos não O1 estes estavam ausentes, com exceção de um isolado clínico não O1 (gene tcpA+). A análise do PFGE revelou pulsotipos distintos entre os O1 e NAGs, embora dois destes últimos tenham apresentado relação clonal com os O1 clínicos. Todos os O1 clínicos apresentaram relação clonal com isolados de referência da sétima pandemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibrio cholerae, agente etiológico da cólera, é uma bactéria nativa de ambientes aquáticos de regiões temperadas e tropicais em todo o mundo. A cólera é endemica e epidemica em países da África, Ásia e Americas Central e do Sul. Neste trabalho o objetivo foi estudar a diversidade genética de isolados desta espécie, de ambientes aquáticos da Amazônia brasileira. Um total de 148 isolados de V.cholerae não-O1 e não-O139 (NAGs) e O1 ambientais da Amazônia, obtidos entre 1977 e 2007, foram caracterizados e comparados a linhagens clínicas de V.cholerae O1 da sexta e sétima pandemias. Utilizou-se os perfis de macrorestrição definidos em eletroforese em gel de agarose em campo pulsado (PFGE), para determinar a relação clonal entre V.cholerae non-O1 e O1 ambientais e clínicos. A presença de genes de virulência (hlyA/hem, hlyB, hlyC, rtxA, rtxC, tcp, ctx, zot, ace, stn/sto) e integrons de classe 1, 2 e 3 (intI 1, 2 e 3), foi analisada utilizando-se a reação em cadeia da polimerase. A análise dos perfis de macrorestrição revelou que os NAGs apresentaram uma grande diversidade genética comparada aos V.cholerae O1. Isolados de NAGs e O1 segregaram em distintos grupos e a maioria dos O1 ambientais apresentou relação clonal com isolados clínicos da sétima pandemia de cólera. A distribuição dos genes de virulência entre os NAGs é diferente a dos O1, os quais, em geral, foram positivos para todos os genes de virulência estudados exceto stn/sto e integrons de classe 1, 2 e 3. Alguns V.cholerae O1 ambientais pertencentes a linhagem da sétima pandemia, apresentaram uma extensiva perda de genes. Diferentes NAGs foram stn/sto+ e intI 1+. Dois alelos do gene aadA foram encontrados: aadA2 e aadA7. De modo interessante os V.cholerae O1 ambientais pertencentes à linhagem pandêmica, só foram isolados durante o período da última epidemia de cólera na região Amazônica brasileira (1991-1996).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the presence of potentially human pathogenic strains of Vibrio spp., Aeromonas spp., Escherichia coli, Salmonella spp. and Staphylococcus aureus in fish commercialized in street markets of Sao Paulo city, Brazil. Twenty fish of different species were analyzed for foodborne pathogens using conventional methods. High levels of fecal contamination were detected in 25% of samples. S. aureus was isolated from 10% of samples. All were negative for Salmonella. Vibrio species, including Vibrio cholerae non-O1/non-O139, were observed in 85% of samples although Vibrio parahaemolyticus was not found in this study. Aeromonas spp., including A. hydrophila, was isolated from 50% of fish samples. The occurrence of these pathogens suggests that the fish commercialized in Sao Paulo may represent a health risk to the consumers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the nineteenth century ships have been using ballast water (BW) for safety, stability, propulsion and maneuverability, as well as to redress loss of fuel weight and water consumption, and to maintain structural stress at acceptable levels. Ballast water has been spreading many non-native species around the globe, but little is known about the extent and potential significance of ship-mediated transfer of microorganisms. The global movements of ballast water by ships create a long-distance dispersal mechanism for human pathogens that may be important in the worldwide distribution of microorganisms, as well as for the epidemiology of waterborne diseases. Only a few studies have been carried out on this subject, most of them involving ballast water containing crustacean larvae and phytoplankton. Specialized microbiological studies on these waters are necessary to avoid a repeat of what happened in 1991, when epidemic cholera was reported in Peru and rapidly spread through Latin America and Mexico. In July of 1992, Vibrio cholerae was found in the USA and the Food and Drug Administration (FDA) determined that it came from ballast water of ships whose last port of call was in South America. In Brazil, just a few studies about the subject have been performed. An exploratory study by the Brazilian National Health Surveillance Agency (Agencia Nacional de Vigilancia Sanitaria - ANVISA) found in ballast water different microorganisms, such as fecal coliforms, Escherichia coli, Enterococcus faecalis, Clostridium perfringens, coliphages, Vibrio cholerae O1 and Vibrio cholerae non-O1. Until now, Brazil has been focusing only on organisms transported to its territory from other countries by ballast water, to avoid their establishment and dissemination in Brazilian areas. Studies that can assess the probability that water ballast carries pathogenic microorganisms are extremely important, as is the examination of ships that arrive in the country. Treatment of the human infections caused by BW exists but none is completely safe and efficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent emergence of a pathogenic new non-O1 serotype (O139) of Vibrio cholerae has led to numerous studies in an attempt to identify the origins of this new strain. Our studies indicate that O139 strains have clear differences in the surface polysaccharides when compared with O1 strains: the lipopolysaccharide can be described as semi-rough. Southern hybridization with the O1 rfb region demonstrates that O139 strains no longer contain any of the rfb genes required for the synthesis of the O1 O-antigen or its modification and also lack at least 6 kb of additional contiguous DNA. However, O139 strains have retained rfaD and have a single open reading frame closely related to three small open reading frames of the O1 rfb region. This region is closely related to the H-repeat of Escherichia coli and to the transposases of a number of insertion sequence elements and has all the features of an insertion sequence element that has been designated VcIS1. Transposon insertion mutants defective in O139 O-antigen (and capsule) biosynthesis map to the same fragment as VcIS1. Preliminary sequence data of complementing clones indicate that this DNA encodes a galactosyl-transferase and other enzymes for the utilization of galactose in polysaccharide biosynthesis. We propose a mechanism by which both the Ogawa serotype of O1 strains and the O139 serotype strains may have evolved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genus Vibrioof the family Vibrionaceae are Gram negative, oxidasepositive, rod- or curved- rodshaped facultative anaerobes, widespread in marine and estuarine environments. Vibrio species are opportunistic human pathogens responsible for diarrhoeal disease, gastroenteritis, septicaemia and wound infections and are also pathogens of aquatic organisms, causing infections to crustaceans, bivalves and fishes. In the present study, marine environmental samples like seafood and water and sediment samples from aquafarms and mangroves were screened for the presence of Vibrio species. Of the134 isolates obtained from the various samples, 45 were segregated to the genus Vibrio on the basis of phenotypic characterization.like Gram staining, oxidase test, MoF test and salinity tolerance. Partial 16S rDNA sequence analysis was utilized for species level identification of the isolates and the strains were identified as V. cholerae(N=21), V. vulnificus(N=18), V. parahaemolyticus(N=3), V. alginolyticus (N=2) and V. azureus (N=1). The genetic relatedness and variations among the 45 Vibrio isolates were elucidated based on 16S rDNA sequences. Phenotypic characterization of the isolates was based on their response to 12 biochemical tests namely Voges-Proskauers’s (VP test), arginine dihydrolase , tolerance to 3% NaCl test, ONPG test that detects β-galactosidase activity, and tests for utilization of citrate, ornithine, mannitol, arabinose, sucrose, glucose, salicin and cellobiose. The isolates exhibited diverse biochemical patterns, some specific for the species and others indicative of their environmental source.Antibiogram for the isolates was determined subsequent to testing their susceptibility to 12 antibiotics by the disc diffusion method. Varying degrees of resistance to gentamycin (2.22%), ampicillin(62.22%), nalidixic acid (4.44%), vancomycin (86.66), cefixime (17.77%), rifampicin (20%), tetracycline (42.22%) and chloramphenicol (2.22%) was exhibited. All the isolates were susceptible to streptomycin, co-trimoxazole, trimethoprim and azithromycin. Isolates from all the three marine environments exhibited multiple antibiotic resistance, with high MAR index value. The molecular typing methods such as ERIC PCR and BOX PCR revealed intraspecies relatedness and genetic heterogeneity within the environmental isolatesof V. cholerae and V. vulnificus. The 21 strains of V. choleraewere serogroupedas non O1/ non O139 by screening for the presence O1rfb and O139 rfb marker genes by PCR. The virulence/virulence associated genes namely ctxA, ctxB, ace, VPI, hlyA, ompU, rtxA, toxR, zot, nagst, tcpA, nin and nanwere screened in V. cholerae and V. vulnificusstrains.The V. vulnificusstrains were also screened for three species specific genes viz., cps, vvhand viu. In V. cholerae strains, the virulence associated genes like VPI, hlyA, rtxA, ompU and toxR were confirmed by PCR. All the isolates, except for strain BTOS6, harbored at least one or a combination of the tested genes and V. choleraestrain BTPR5 isolated from prawn hosted the highest number of virulence associated genes. Among the V. vulnificusstrains, only 3 virulence genes, VPI, toxR and cps, were confirmed out of the 16 tested and only 7 of the isolates had these genes in one or more combinations. Strain BTPS6 from aquafarm and strain BTVE4 from mangrove samples yielded positive amplification for the three genes. The toxRgene from 9 strains of V. choleraeand 3 strains of V. vulnificus were cloned and sequenced for phylogenetic analysis based on nucleotide and the amino acid sequences. Multiple sequence alignment of the nucleotide sequences and amino acid sequences of the environmental strains of V. choleraerevealed that the toxRgene in the environmental strains are 100% homologous to themselves and to the V. choleraetoxR gene sequence available in the Genbank database. The 3 strains of V. vulnificus displayed high nucleotide and amino acid sequence similarity among themselves and to the sequences of V. cholerae and V. harveyi obtained from the GenBank database, but exhibited only 72% homology to the sequences of its close relative V. vulnificus. Structure prediction of the ToxR protein of Vibrio cholerae strain BTMA5 was by PHYRE2 software. The deduced amino acid sequence showed maximum resemblance with the structure of DNA-binding domain of response regulator2 from Escherichia coli k-12 Template based homology modelling in PHYRE2 successfully modelled the predicted protein and its secondary structure based on protein data bank (PDB) template c3zq7A. The pathogenicity studies were performed using the nematode Caenorhabditiselegansas a model system. The assessment of pathogenicity of environmental strain of V. choleraewas conducted with E. coli strain OP50 as the food source in control plates, environmental V. cholerae strain BTOS6, negative for all tested virulence genes, to check for the suitability of Vibrio sp. as a food source for the nematode;V. cholerae Co 366 ElTor, a clinical pathogenic strain and V. cholerae strain BTPR5 from seafood (Prawn) and positive for the tested virulence genes like VPI, hlyA, ompU,rtxA and toxR. It was found that V. cholerae strain BTOS6 could serve as a food source in place of E. coli strain OP50 but behavioral aberrations like sluggish movement and lawn avoidance and morphological abnormalities like pharyngeal and intestinal distensions and bagging were exhibited by the worms fed on V. cholerae Co 366 ElTor strain and environmental BTPR5 indicating their pathogenicity to the nematode. Assessment of pathogenicity of the environmental strains of V. vulnificus was performed with V. vulnificus strain BTPS6 which tested positive for 3 virulence genes, namely, cps, toxRand VPI, and V. vulnificus strain BTMM7 that did not possess any of the tested virulence genes. A reduction was observed in the life span of worms fed on environmental strain of V. vulnificusBTMM7 rather than on the ordinary laboratory food source, E. coli OP50. Behavioral abnormalities like sluggish movement, lawn avoidance and bagging were also observed in the worms fed with strain BTPS6, but the pharynx and the intestine were intact. The presence of multi drug resistant environmental Vibrio strainsthat constitute a major reservoir of diverse virulence genes are to be dealt with caution as they play a decisive role in pathogenicity and horizontal gene transfer in the marine environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resurgence of the enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries like India. The southern Indian state of Kerala is endemic to cholera. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. Marine aquaculture settings and mangrove environments of Kerala serve as reservoirs for V. cholerae. The non-O1/non-O139 environmental isolates of V. cholerae with incomplete ‘virulence casette’ are to be dealt with caution as they constitute a major reservoir of diverse virulence genes in the marine environment and play a crucial role in pathogenicity and horizontal gene transfer. The genes coding cholera toxin are borne on, and can be infectiously transmitted by CTXΦ, a filamentous lysogenic vibriophages. Temperate phages can provide crucial virulence and fitness factors affecting cell metabolism, bacterial adhesion, colonization, immunity, antibiotic resistance and serum resistance. The present study was an attempt to screen the marine environments like aquafarms and mangroves of coastal areas of Alappuzha and Cochin, Kerala for the presence of lysogenic V. cholerae, to study their pathogenicity and also gene transfer potential. Phenotypic and molecular methods were used for identification of isolates as V. cholerae. The thirty one isolates which were Gram negative, oxidase positive, fermentative, with or without gas production on MOF media and which showed yellow coloured colonies on TCBS (Thiosulfate Citrate Bile salt Sucrose) agar were segregated as vibrios. Twenty two environmental V. cholerae strains of both O1 and non- O1/non-O139 serogroups on induction with mitomycin C showed the presence of lysogenic phages. They produced characteristic turbid plaques in double agar overlay assay using the indicator strain V. cholerae El Tor MAK 757. PCR based molecular typing with primers targeting specific conserved sequences in the bacterial genome, demonstrated genetic diversity among these lysogen containing non-O1 V. cholerae . Polymerase chain reaction was also employed as a rapid screening method to verify the presence of 9 virulence genes namely, ctxA, ctxB, ace, hlyA, toxR, zot,tcpA, ninT and nanH, using gene specific primers. The presence of tcpA gene in ALPVC3 was alarming, as it indicates the possibility of an epidemic by accepting the cholera. Differential induction studies used ΦALPVC3, ΦALPVC11, ΦALPVC12 and ΦEKM14, underlining the possibility of prophage induction in natural ecosystems, due to abiotic factors like antibiotics, pollutants, temperature and UV. The efficiency of induction of prophages varied considerably in response to the different induction agents. The growth curve of lysogenic V. cholerae used in the study drastically varied in the presence of strong prophage inducers like antibiotics and UV. Bacterial cell lysis was directly proportional to increase in phage number due to induction. Morphological characterization of vibriophages by Transmission Electron Microscopy revealed hexagonal heads for all the four phages. Vibriophage ΦALPVC3 exhibited isometric and contractile tails characteristic of family Myoviridae, while phages ΦALPVC11 and ΦALPVC12 demonstrated the typical hexagonal head and non-contractile tail of family Siphoviridae. ΦEKM14, the podophage was distinguished by short non-contractile tail and icosahedral head. This work demonstrated that environmental parameters can influence the viability and cell adsorption rates of V. cholerae phages. Adsorption studies showed 100% adsorption of ΦALPVC3 ΦALPVC11, ΦALPVC12 and ΦEKM14 after 25, 30, 40 and 35 minutes respectively. Exposure to high temperatures ranging from 50ºC to 100ºC drastically reduced phage viability. The optimum concentration of NaCl required for survival of vibriophages except ΦEKM14 was 0.5 M and that for ΦEKM14 was 1M NaCl. Survival of phage particles was maximum at pH 7-8. V. cholerae is assumed to have existed long before their human host and so the pathogenic clones may have evolved from aquatic forms which later colonized the human intestine by progressive acquisition of genes. This is supported by the fact that the vast majority of V. cholerae strains are still part of the natural aquatic environment. CTXΦ has played a critical role in the evolution of the pathogenicity of V. cholerae as it can transmit the ctxAB gene. The unusual transformation of V. cholerae strains associated with epidemics and the emergence of V. cholera O139 demonstrates the evolutionary success of the organism in attaining greater fitness. Genetic changes in pathogenic V. cholerae constitute a natural process for developing immunity within an endemically infected population. The alternative hosts and lysogenic environmental V. cholerae strains may potentially act as cofactors in promoting cholera phage ‘‘blooms’’ within aquatic environments, thereby influencing transmission of phage sensitive, pathogenic V. cholerae strains by aquatic vehicles. Differential induction of the phages is a clear indication of the impact of environmental pollution and global changes on phage induction. The development of molecular biology techniques offered an accessible gateway for investigating the molecular events leading to genetic diversity in the marine environment. Using nucleic acids as targets, the methods of fingerprinting like ERIC PCR and BOX PCR, revealed that the marine environment harbours potentially pathogenic group of bacteria with genetic diversity. The distribution of virulence associated genes in the environmental isolates of V. cholerae provides tangible material for further investigation. Nucleotide and protein sequence analysis alongwith protein structure prediction aids in better understanding of the variation inalleles of same gene in different ecological niche and its impact on the protein structure for attaining greater fitness of pathogens. The evidences of the co-evolution of virulence genes in toxigenic V. cholerae O1 from different lineages of environmental non-O1 strains is alarming. Transduction studies would indicate that the phenomenon of acquisition of these virulence genes by lateral gene transfer, although rare, is not quite uncommon amongst non-O1/non-O139 V. cholerae and it has a key role in diversification. All these considerations justify the need for an integrated approach towards the development of an effective surveillance system to monitor evolution of V. cholerae strains with epidemic potential. Results presented in this study, if considered together with the mechanism proposed as above, would strongly suggest that the bacteriophage also intervenes as a variable in shaping the cholera bacterium, which cannot be ignored and hinting at imminent future epidemics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of Aeromonas spp., Vibrio cholerae, and Plesiomonas shigelloides in fresh water from various sources in Araraquara, State of São Paulo, Brazil was determined. Samples from ten distinct irrigation systems used in vegetable cultivation, from five distinct streams, from two reservoirs, from one artificial lake, and from three distinct springs were analyzed. All isolates were serotyped and tested for hemolysin, cytotoxin, heat-stable (ST) and heat-labile (LT) enterotoxins production; presence of plasmid; autoagglutination and drug resistance. V. cholerae isolates were also tested for cholera enterotoxin (CT) production, and Aeromonas isolates for suicide phenomenon. No P. shigelloides was found. V. cholerae non 01 was found in five irrigation water samples and in three stream samples. Aeromonas sp. were isolated in two samples of irrigation water, in three streams, and in one reservoir. All the V. cholerae and Aeromonas isolates were positive for P-hemolysin production, and all Aeromonas isolates were positive for suicide phenomenon; cytotoxic activities were observed in two Aeromonas strains. Cholera enterotoxin was not found in eight V. cholerae non-01 isolates tested by the Y-1 mouse adrenal cell. All isolates were also negative for the other virulence markers. Ii cholelerae isolates were found to be sensitive to the majority of drugs tested, while Aeromonas strains presented multiple drug resistance..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibrio cholerae is an autochthonous marine bacterium, and its association with diverse planktonic crustaceans has been extensively investigated; however, the presence of V. cholerae on individuals of most phyla of planktonic animals is still incompletely understood. The objective of this study was to analyze the distribution of V. cholerae serogroup O1 associated with specific zooplankton taxa in an estuary and the adjacent continental shelf of the southeastern Brazilian coast. The occurrence of the bacterium was assessed in zooplankton samples, specifically on the most abundant taxa, using direct fluorescence assay (DFA) and direct viable count-direct fluorescence assay (DVC-DFA) methods. Vibrio cholerae O1 was detected in 88% of samples collected from the Santos-Bertioga estuary and in 67% of samples from the shelf. The salinity of the estuarine water ranged from 21.8 to 34.6, significantly lower than the shelf water which was 32.1-36.1. Salinity was the only environmental variable measured that displayed a significant correlation with the presence of V. cholerae (P < 0.05). Vibrio cholerae O1 was detected in chaetognaths, pluteus larvae of echinoderms and planktonic fish eggs (Engraulidae), all new sites for this bacterium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rugose colony variant of Vibrio cholerae O1, biotype El Tor, is shown to produce an exopolysaccharide, EPSETr, that confers chlorine resistance and biofilm-forming capacity. EPSETr production requires a chromosomal locus, vps, that contains sequences homologous to carbohydrate biosynthesis genes of other bacterial species. Mutations within this locus yield chlorine-sensitive, smooth colony variants that are biofilm deficient. The biofilm-forming properties of EPSETr may enable the survival of V. cholerae O1 within environmental aquatic habitats between outbreaks of human disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of the murine Fab S-20-4 from a protective anti-cholera Ab specific for the lipopolysaccharide Ag of the Ogawa serotype has been determined in its unliganded form and in complex with synthetic fragments of the Ogawa O-specific polysaccharide (O-SP). The upstream terminal O-SP monosaccharide is shown to be the primary antigenic determinant. Additional perosamine residues protrude outwards from the Ab surface and contribute only marginally to the binding affinity and specificity. A complementary water-excluding hydrophobic interface and five Ab–Ag hydrogen bonds are crucial for carbohydrate recognition. The structure reported here explains the serotype specificity of anti-Ogawa Abs and provides a rational basis toward the development of a synthetic carbohydrate-based anti-cholera vaccine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Giant freshwater prawn, Macrobrachium rosenbergii (de Man), is an important commercial species with considerable export value, ideal for cultivation under low saline conditions and in freshwater zones (Kurup 1994). However, despite more than a decade of research on its larval production systems, vibriosis still hampers seed production resulting in high mortality rates. Among the different species of vibrios, Vibrio alginolyticus has been isolated frequently from diseased shrimp as the aetiological agent of vibriosis and has been described as a principal pathogen of both penaeids and nonpenaeids (Lightner 1988; Baticados, Cruz-Lacierda, de la Cruz, Duremdez-Fernandez, Gacutan, Lavilla- Pitogo & Lio-Po 1990; Mohney, Lightner & Bell 1994; Lee, Yu, Chen, Yang & Liu 1996). Vibrio fluvialis, V. alginolyticus, V. cholerae non-O1 (Fujioka & Greco 1984), Aeromonas liquifaciens and V. anguillarum (Colorni 1985) have been isolated from the larvae of M. rosenbergii. A profound relationship between the abundance of members of the family Vibrionaceae and larval mortality (Singh 1990) and the predominance of Vibrio in eggs, larvae and post-larvae of M. rosenbergii (Hameed, Rahaman, Alagan & Yoganandhan 2003) was reported. The present paper reports the isolation, characterization, pathogenicity and antibiotic sensitivity of V. alginolyticus associated with M. rosenbergii larvae during an occurrence of severe mass mortality at the ninth larval stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibrio cholerae Cytolysin (VCC) gehört zur Gruppe der Exotoxine und bildet auf Membranen heptamere transmembrane Poren. VCC wird als protoxin mit einem Molekulargewicht von 79 kDa sezerniert und benötigt die proteolytische Spaltung der N-terminalen Pro-Region um Poren in der Membran zu bilden. Diese Spaltung erfolgt sowohl in Lösung, als auch nach der Bindung an Membranen, aber nur aktiviertes VCC oligomererisiert in eine lytische Pore. Die Kristallstruktur von VCC zeigt, dass das Monomer vier verschiedenen strukturellen Domänen enthält; die cytolytische Domäne, mit der Pre-Stem-Sequenz, der Pro-Region und den beiden C-terminalen Domänen β-Trefoil und β-Prism. Die porenbildende β-Barrel wird aus je einer Pre-Stem Domäne jedes der einzelnen sieben Untereinheiten gebildet. Da sich die porenbildende Region im Monomer zwischen den Domänen β-Prism und β-Trefoil befindet, sind konformationelle Änderungen des Toxins notwendig, um die Insertion dieser Region in die Membran zu ermöglichen. In dieser Arbeit wurde unter anderem der Mechanismus der Porenbildung durch die Konstruktion von Disulfid-Derivaten untersucht. Die Bildung von Disulfidbrücken wurde verwendet, um die porenbildende Region entweder mit der β-Trefoil oder β-Prism Domäne zu verknüpfen. Unter nicht-reduzierenden Bedingungen bindet das Toxin an Membranen und oligomerisiert zu SDS-labilen Oligomeren. Nach der Reduktion der künstlichen Disulfidbrücke erlangen die gebildeten Oligomere SDS-Stabilität und permeabilisieren die Membran. Durch die Zugabe steigender Konzentrationen des VCC-Derivats zu aktivem Toxin, wird die SDS-Stabilität der gebildeten Oligomere stark reduziert. Die Insertion des aktiven Toxins in die Membran wird allerdings nicht verhindert und daher Poren mit reduziertem funktionellen Durchmesser gebildet. Diese Ergebnisse verdeutlichen, dass die Bildung einer Prä-Pore vor der Insertion des Toxins in die Membran erfolgt und zeigt zum ersten Mal ein solches Zwischenstadium für ein β-porenbildendes Toxin, das von Gram-negativen Organismen produziert wird. Diese Ergebnisse deuten auf einen archetypischen Mechanismus der Porenbildung hin. Zusätzlich wurde die Funktion der beiden C-terminalen Domänen untersucht, und daher verschiedene Deletions- und Substitutionsmutanten konstruiert. Die β-Trefoil Domäne ist nicht essentiell für die Bindung des Toxins an Membranen, ist aber für die korrekte Faltung des Toxins notwendig. Die C-terminale β-Prism Domäne vermittelt die Bindung des Toxins an Membranen über Zuckerrezeptoren.