953 resultados para VERTICAL JUMP PERFORMANCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carvalho, FLP, Carvalho, MCGA, Simao, R, Gomes, TM, Costa, PB, Neto, LB, Carvalho, RLP, and Dantas, EHM. Acute effects of a warm-up including active, passive, and dynamic stretching on vertical jump performance. J Strength Cond Res 26(9): 2447-2452, 2012-The purpose of this study was to examine the acute effects of 3 different stretching methods combined with a warm-up protocol on vertical jump performance. Sixteen young tennis players (14.5 +/- 2.8 years; 175 +/- 5.6 cm; 64.0 +/- 11.1 kg) were randomly assigned to 4 different experimental conditions on 4 successive days. Each session consisted of a general and specific warm-up, with 5 minutes of running followed by 10 jumps, accompanied by one of the subsequent conditions: (a) Control Condition (CC)-5 minutes of passive rest; (b) Passive Stretching Condition (PSC)-5 minutes of passive static stretching; (c) Active Stretching Condition (ASC)-5 minutes of active static stretching; and (d) Dynamic Stretching Condition (DC)-5 minutes of dynamic stretching. After each intervention, the subjects performed 3 squat jumps (SJs) and 3 countermovement jumps (CMJs), which were measured electronically. For the SJ, 1-way repeated measures analysis of variance (CC x PSC x ASC x DC) revealed significant decreases for ASC (28.7 +/- 4.7 cm; p = 0.01) and PSC (28.7 +/- 4.3 cm; p = 0.02) conditions when compared with CC (29.9 +/- 5.0 cm). For CMJs, there were no significant decreases (p > 0.05) when all stretching conditions were compared with the CC. Significant increases in SJ performance were observed when comparing the DC (29.6 +/- 4.9 cm; p = 0.02) with PSC (28.7 +/- 4.3 cm). Significant increases in CMJ performance were observed when comparing the conditions ASC (34.0 +/- 6.0 cm; p = 0.04) and DC (33.7 +/- 5.5 cm; p = 0.03) with PSC (32.6 +/- 5.5 cm). A dynamic stretching intervention appears to be more suitable for use as part of a warm-up in young athletes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to assess the effect of training load regulation, using the CMJ at the beginning of the session, on the total plyometric training load and the vertical jump performance. 44 males were divided into 4 groups: No Regulation Group (nRG), Regulation Group (RG), Yoked Group (YG) and Control Group (CG). The nRG received 6 weeks of plyometric training, with no adjustment in training load. The RG underwent the same training; however, the training load was adjusted according to the CMJ performance at the beginning of each session. The adjustment made in RG was replicated for the volunteers from the corresponding quartile in the YG, with no consideration given to the YG participant's condition at the beginning of its session. At the end of the training, the CMJ and SJ performance of all of the participants was reassessed. The total training load was significantly lower (p=0.036; ES=0.82) in the RG and the YG (1905 +/- 37 jumps) compared to the nRG (1926 +/- 0 jumps). The enhancement in vertical jump performance was significant for the groups that underwent the training (p<0.001). Vertical jump performance, performed at the beginning of the session, as a tool to regulate the training load resulted in a decrease of the total training load, without decreasing the long-term effects on vertical jump performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies (on an inclined platform or with special shoes) have reported improved jump performance when the ankle was in a dorsiflexion (DF) position. The present study aims to test whether shoes inducing moderate DF modify vertical jump performance and energy cost. Twenty-one young, healthy female subjects (30 +/- 6 yr, 58 +/- 6 kg, O2max 45 +/- 3 mLxkg-1xmin-1, mean +/- SD) participated in the study. Jump performance was tested with subjects either wearing 4 degrees DF or standard (S) shoes. The jump tests (performed on a force platform) consisted of squat jump (SJ), countermovement jump (CMJ), and continuous jumps (CJ) during 15 seconds. Measured parameters were jump height, speed at take off, and maximal and average power. Oxygen uptake was measured on a treadmill while subjects ran at 95% of the anaerobic threshold during a 7-minute steady-state period. As compared with S shoes, DF shoes significantly improved the height of SJ (31 +/- 4 cm vs. 34 +/- 4 cm, p = 0.0001), CMJ (32 +/- 4 cm vs. 34 +/- 4 cm, p = 0.0004), and CJ (17.5 +/- 4.2 cm vs. 22.0 +/- 6.0 cm, p = 0.0001). Speed at take off was also significantly higher. Mean power significantly increased in SJ and CJ but not in CMJ. Oxygen uptake was not different between conditions (p = 0.40). Dorsiflexion shoes induce a significant increase in jump performance. These results are in accordance with the concept that a DF of the ankle may induce an increase of the length and strength of the triceps surae (higher torque). However, wearing DF shoes did not require more energy during running. Dorsiflexion shoes could be used to increase jump performance in several sports such as volleyball in which jump height is essential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this study were (a) to assess the ability of the rating of perceived exertion (RPE) to predict performance (i.e. number of vertical jumps performed to a fixed jump height) of an intermittent vertical jump exercise, and (b) to determine the ability of RPE to describe the physiological demand of such exercise. Eight healthy men performed intermittent vertical jumps with rest periods of 4, 5, and 6s until fatigue. Heart rate and RPE were recorded every five jumps throughout the sessions. The number of vertical jumps performed was also recorded. Random coefficient growth curve analysis identified relationships between the number of vertical jumps and both RPE and heart rate for which there were similar slopes. In addition, there were no differences between individual slopes and the mean slope for either RPE or heart rate. Moreover, RPE and number of jumps were highly correlated throughout all sessions (r=0.97-0.99; P0.001), as were RPE and heart rate (r=0.93-0.97; P0.001). The findings suggest that RPE can both predict the performance of intermittent vertical jump exercise and describe the physiological demands of such exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this study were (a) to assess the ability of the rating of perceived exertion (RPE) to predict performance (i.e. number of vertical jumps performed to a fixed jump height) of an intermittent vertical jump exercise, and (b) to determine the ability of RPE to describe the physiological demand of such exercise. Eight healthy men performed intermittent vertical jumps with rest periods of 4, 5, and 6s until fatigue. Heart rate and RPE were recorded every five jumps throughout the sessions. The number of vertical jumps performed was also recorded. Random coefficient growth curve analysis identified relationships between the number of vertical jumps and both RPE and heart rate for which there were similar slopes. In addition, there were no differences between individual slopes and the mean slope for either RPE or heart rate. Moreover, RPE and number of jumps were highly correlated throughout all sessions (r=0.97-0.99; P0.001), as were RPE and heart rate (r=0.93-0.97; P0.001). The findings suggest that RPE can both predict the performance of intermittent vertical jump exercise and describe the physiological demands of such exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to test if the critical power model can be used to determine the critical rest interval (CRI) between vertical jumps. Ten males performed intermittent countermovement jumps on a force platform with different resting periods (4.1 +/- 0.3 s, 5.0 +/- 0.4 s, 5.9 +/- 0.6 s). Jump trials were interrupted when participants could no longer maintain 95% of their maximal jump height. After interruption, number of jumps, total exercise duration and total external work were computed. Time to exhaustion (s) and total external work (J) were used to solve the equation Work = a + b . time. The CRI (corresponding to the shortest resting interval that allowed jump height to be maintained for a long time without fatigue) was determined dividing the average external work needed to jump at a fixed height (J) by b parameter (J/s). in the final session, participants jumped at their calculated CRI. A high coefficient of determination (0.995 +/- 0.007) and the CRI (7.5 +/- 1.6 s) were obtained. In addition, the longer the resting period, the greater the number of jumps (44 13, 71 28, 105 30, 169 53 jumps; p<0.0001), time to exhaustion (179 +/- 50, 351 +/- 120, 610 +/- 141, 1,282 +/- 417 s; p<0.0001) and total external work (28.0 +/- 8.3, 45.0 +/- 16.6, 67.6 +/- 17.8, 111.9 +/- 34.6 kJ; p<0.0001). Therefore, the critical power model may be an alternative approach to determine the CRI during intermittent vertical jumps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although dynamic and stretching exercises have been widely investigated, there is little information about warm up performed by tag games. Thus, the purpose of the present study was to verify the acute effect of dynamic exercises compared to a tag game warm up on agility and vertical jump in children. 25 boys and 24 girls participated in this study and performed the agility and vertical jump tests after warm up based on dynamic exercises or as a tag game lasting 10 min each in two different days randomly. Dynamic exercises warm up consisted in a run lasting 2.5 min followed by 2 series of 8 dynamic exercises lasting 10 seconds each interspersed with 20s of light run to recovery. Tag game warm up was performed by a tag game with two variations lasting 5 min each. The first variation there was a single cather, which aimed to get the other participants by touching hands. In the second part of the game, the rules were the same except that the participant that was caught had to help the catcher forming a team of catchers. Warm up intensity was monitored by OMNI perceived exertion scale. ANOVA 2x2 for repeated measures (Warm up x Sex) demonstrated no significant differences between dynamic exercises and tag game for agility and vertical jump (P>0.05) for boys and girls. Perceived exertion was significantly higher in tag game compared to dynamic exercises on girls (P<0.05). Both warm up models showed similar acute effects on agility and vertical jump in children. © Faculty of Education. University of Alicante.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To examine the influence of a preventative training program (PTP) on sagittal plane kinematics during different landing tasks and vertical jump height (VJH) in males. Design: Six weeks prospective exercise intervention. Participants: Fifteen male volleyball athletes (13 ± 0.7 years, 1.70 ± 0.12 m, 60 ± 12 kg). Interventions: PTP consisting of plyometric, balance and core stability exercises three times per week for six weeks. Bilateral vertical jumps with double leg (DL) and single leg (SL) landings were performed to measure the effects of training. Main outcome measurements: Kinematics of the knee and hip before and after training and VJH attained during both tasks after training. The hypothesis was that the PTP would produce improvements in VJH, but would not generate great changes in biomechanical behavior. Results: The only change identified for the SL was the longest duration of landing, which represents the time spent from initial ground contact to maximum knee flexion, after training, while increased angular displacement of the knee was observed during DL. The training did not significantly alter the VJH in either the SL (difference: 2.7 cm) or the DL conditions (difference: 3.5 cm). Conclusions: Despite the PTP's effectiveness in inducing some changes in kinematics, the changes were specific for each task, which highlights the importance of the specificity and individuality in selecting prevention injury exercises. Despite the absence of significant increases in the VJH, the absolute differences after training showed increases corroborating with the findings of statistically powerful studies that compared the results with control groups. The results suggest that short-term PTPs in low risk young male volleyball athletes may enhance performance and induce changes in some kinematic parameters. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measuring and tracking athletic performance is crucial to an athlete’s development and the countermovement vertical jump is often used to measure athletic performance, particularly lower limb power. The linear power developed in the lower limb is estimated through jump height. However, the relationship between angular power, produced by the joints of the lower limb, and jump height is not well understood. This study examined the contributions of the kinetic value of angular power, and its kinematic component, angular velocity, of the lower limb joints to jump height in the countermovement vertical jump. Kinematic and kinetic data were gathered from twenty varsity-level basketball and volleyball athletes as they performed six maximal effort jumps in four arm swing conditions: no-arm involvement, single-non-dominant arm swing, single-dominant arm swing, and two-arm swing. The displacement of the whole body centre of mass, peak joint powers, peak angular velocity, and locations of the peaks as a percentage of the jump’s takeoff period, were computed. Linear regressions assessed the relationship of the variables to jump height. Results demonstrated that knee peak power (p = 0.001, ß = 0.363, r = 0.363), its location within takeoff period (p = 0.023, ß = -0.256, r = 0.256), and peak knee peak angular velocity (p = 0.005, ß = 0.310, r = 0.310) were moderately linked to increased jump height. Additionally, the location, within the takeoff period, of the peak angular velocities of the hip (p = 0.003, ß = -0.318, r = 0.419) and ankle (p = 0.011, ß = 0.270, r = 0.419) were positively linked to jump height. These results highlight the importance of training the velocity and timing of joint motion beyond traditional power training protocols as well as the importance of further investigation into appropriate testing protocol that is sensitive to the contributions by individual joints in maximal effort jumping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: This study aims to investigate physical performance and hematological changes in 32 elite male team-sport players after 14 d of "live high-train low" (LHTL) training in normobaric hypoxia (≥14 h·d at 2800-3000 m) combined with repeated-sprint training (six sessions of four sets of 5 × 5-s sprints with 25 s of passive recovery) either in normobaric hypoxia at 3000 m (LHTL + RSH, namely, LHTLH; n = 11) or in normoxia (LHTL + RSN, namely, LHTL; n = 12) compared with controlled "live low-train low" (LLTL; n = 9) training. METHODS: Before (Pre), immediately after (Post-1), and 3 wk after (Post-2) the intervention, hemoglobin mass (Hbmass) was measured in duplicate [optimized carbon monoxide (CO) rebreathing method], and vertical jump, repeated-sprint (8 × 20 m-20 s recovery), and Yo-Yo Intermittent Recovery level 2 (YYIR2) performances were tested. RESULTS: Both hypoxic groups similarly increased their Hbmass at Post-1 and Post-2 in reference to Pre (LHTLH: +4.0%, P < 0.001 and +2.7%, P < 0.01; LHTL: +3.0% and +3.0%, both P < 0.001), whereas no change occurred in LLTL. Compared with Pre, YYIR2 performance increased by ∼21% at Post-1 (P < 0.01) and by ∼45% at Post-2 (P < 0.001), with no difference between the two intervention groups (vs no change in LLTL). From Pre to Post-1, cumulated sprint time decreased in LHTLH (-3.6%, P < 0.001) and LHTL (-1.9%, P < 0.01), but not in LLTL (-0.7%), and remained significantly reduced at Post-2 (-3.5%, P < 0.001) in LHTLH only. Vertical jump performance did not change. CONCLUSIONS: "Live high-train low and high" hypoxic training interspersed with repeated sprints in hypoxia for 14 d (in season) increases the Hbmass, YYIR2 performance, and repeated-sprint ability of elite field team-sport players, with benefits lasting for at least 3 wk postintervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to test if the critical power model can be used to determine the critical rest interval (CRI) between vertical jumps. Ten males performed intermittent countermovement jumps on a force platform with different resting periods (4.1 +/- 0.3 s, 5.0 +/- 0.4 s, 5.9 +/- 0.6 s). Jump trials were interrupted when participants could no longer maintain 95% of their maximal jump height. After interruption, number of jumps, total exercise duration and total external work were computed. Time to exhaustion (s) and total external work (J) were used to solve the equation Work = a + b . time. The CRI (corresponding to the shortest resting interval that allowed jump height to be maintained for a long time without fatigue) was determined dividing the average external work needed to jump at a fixed height (J) by b parameter (J/s). in the final session, participants jumped at their calculated CRI. A high coefficient of determination (0.995 +/- 0.007) and the CRI (7.5 +/- 1.6 s) were obtained. In addition, the longer the resting period, the greater the number of jumps (44 13, 71 28, 105 30, 169 53 jumps; p<0.0001), time to exhaustion (179 +/- 50, 351 +/- 120, 610 +/- 141, 1,282 +/- 417 s; p<0.0001) and total external work (28.0 +/- 8.3, 45.0 +/- 16.6, 67.6 +/- 17.8, 111.9 +/- 34.6 kJ; p<0.0001). Therefore, the critical power model may be an alternative approach to determine the CRI during intermittent vertical jumps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to motor difficulties, children with developmental coordination disorder (DCD) doesn't feel motivated to do physical activities, sometimes resulting in a decline of their physical fitness, but it isn't really known for sure the reasons that induct children with DCD to low performances in physical fitness tests, because a lot of tasks that are part of the battery of tests of physical performance are complex in the coordination and/or motor control point of view, like the vertical jump for example. Therefore, the objective of this study was to investigate the factors that induct children with DCD to low performances in physical fitness tests, especially in the vertical jump task. For that, cinematic (duration of the eccentrical phase, duration of the concentrical phase, shift of the mass center and velocity of the mass center), kinetic (potency peak and force peak) and vertical jump performance analysis in two conditions (with the use of arms and without it) were realized in a force platform. The results indicated that children with DCD show a lower performance compared to their peers with typical development (TD), due to a lower potency production

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of strength and power training on neuromuscular adaptations and jumping movement pattern and performance. J Strength Cond Res 26(12): 3335-3344, 2012-This study aimed at comparing the effects of strength and power training (ST and PT) regimens on neuromuscular adaptations and changes on vertical jump performance, kinetics, and kinematics parameters. Forty physically active men (178.2 +/- 7.0 cm; 75.1 +/- 8.6 kg; 23.6 +/- 3.5 years) with at least 2 years of ST experience were assigned to an ST (n = 14), a PT (n = 14), or a control group (C; n = 12). The training programs were performed during 8 weeks, 3 times per week. Dynamic and isometric maximum strength, cross-sectional area, and muscle activation were assessed before and after the experimental period. Squat jump (SJ) and countermovement jump (CMJ) performance, kinetics, and kinematics parameters were also assessed. Dynamic maximum strength increased similarly (p < 0.05) for the ST (22.8%) and PT (16.6%) groups. The maximum voluntary isometric contraction increased for the ST and PT groups (p < 0.05) in the posttraining assessments. There was a main time effect for muscle fiber cross-sectional area (p < 0.05), but there were no changes in muscle activation. The SJ height increased, after ST and PT, because of a faster concentric phase and a higher rate of force development (p < 0.05). The CMJ height increased only after PT (p < 0.05), but there were no significant changes in its kinetics and kinematics parameters. In conclusion, neuromuscular adaptations were similar between the training groups. The PT seemed more effective than the ST in increasing jumping performance, but neither the ST nor the PT was able to affect the SJ and the CMJ movement pattern (e.g., timing and sequencing of joint extension initiation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacurau, RFP, Monteiro, GA, Ugrinowitsch C, Tricoli, V, Cabral, LF, Aoki, MS. Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength. J Strength Cond Res 23(1): 304-308, 2009-Different stretching techniques have been used during warm-up routines. However, these routines may decrease force production. The purpose of this study was to compare the acute effect of a ballistic and a static stretching protocol on lower-limb maximal strength. Fourteen physically active women (169.3 +/- 8.2 cm; 64.9 +/- 5.9 kg; 23.1 +/- 3.6 years) performed three experimental sessions: a control session (estimation of 45 degrees leg press one-repetition maximum [1RM]), a ballistic session (20 minutes of ballistic stretch and 45 degrees leg press 1RM), and a static session (20 minutes of static stretch and 45 degrees leg press 1RM). Maximal strength decreased after static stretching (213.2 +/- 36.1 to 184.6 +/- 28.9 kg), but it was unaffected by ballistic stretching (208.4 +/- 34.8 kg). In addition, static stretching exercises produce a greater acute improvement in flexibility compared with ballistic stretching exercises. Consequently, static stretching may not be recommended before athletic events or physical activities that require high levels of force. On the other hand, ballistic stretching could be more appropriate because it seems less likely to decrease maximal strength.