932 resultados para VERIFICATION
Resumo:
Bid opening in e-auction is efficient when a homomorphic secret sharing function is employed to seal the bids and homomorphic secret reconstruction is employed to open the bids. However, this high efficiency is based on an assumption: the bids are valid (e.g., within a special range). An undetected invalid bid can compromise correctness and fairness of the auction. Unfortunately, validity verification of the bids is ignored in the auction schemes employing homomorphic secret sharing (called homomorphic auction in this paper). In this paper, an attack against the homomorphic auction in the absence of bid validity check is presented and a necessary bid validity check mechanism is proposed. Then a batch cryptographic technique is introduced and applied to improve the efficiency of bid validity check.
Resumo:
This paper is a continuation of the paper titled “Concurrent multi-scale modeling of civil infrastructure for analyses on structural deteriorating—Part I: Modeling methodology and strategy” with the emphasis on model updating and verification for the developed concurrent multi-scale model. The sensitivity-based parameter updating method was applied and some important issues such as selection of reference data and model parameters, and model updating procedures on the multi-scale model were investigated based on the sensitivity analysis of the selected model parameters. The experimental modal data as well as static response in terms of component nominal stresses and hot-spot stresses at the concerned locations were used for dynamic response- and static response-oriented model updating, respectively. The updated multi-scale model was further verified to act as the baseline model which is assumed to be finite-element model closest to the real situation of the structure available for the subsequent arbitrary numerical simulation. The comparison of dynamic and static responses between the calculated results by the final model and measured data indicated the updating and verification methods applied in this paper are reliable and accurate for the multi-scale model of frame-like structure. The general procedures of multi-scale model updating and verification were finally proposed for nonlinear physical-based modeling of large civil infrastructure, and it was applied to the model verification of a long-span bridge as an actual engineering practice of the proposed procedures.
Resumo:
This work aims to take advantage of recent developments in joint factor analysis (JFA) in the context of a phonetically conditioned GMM speaker verification system. Previous work has shown performance advantages through phonetic conditioning, but this has not been shown to date with the JFA framework. Our focus is particularly on strategies for combining the phone-conditioned systems. We show that the classic fusion of the scores is suboptimal when using multiple GMM systems. We investigate several combination strategies in the model space, and demonstrate improvement over score-level combination as well as over a non-phonetic baseline system. This work was conducted during the 2008 CLSP Workshop at Johns Hopkins University.
Resumo:
The problem of impostor dataset selection for GMM-based speaker verification is addressed through the recently proposed data-driven background dataset refinement technique. The SVM-based refinement technique selects from a candidate impostor dataset those examples that are most frequently selected as support vectors when training a set of SVMs on a development corpus. This study demonstrates the versatility of dataset refinement in the task of selecting suitable impostor datasets for use in GMM-based speaker verification. The use of refined Z- and T-norm datasets provided performance gains of 15% in EER in the NIST 2006 SRE over the use of heuristically selected datasets. The refined datasets were shown to generalise well to the unseen data of the NIST 2008 SRE.
Resumo:
A data-driven background dataset refinement technique was recently proposed for SVM based speaker verification. This method selects a refined SVM background dataset from a set of candidate impostor examples after individually ranking examples by their relevance. This paper extends this technique to the refinement of the T-norm dataset for SVM-based speaker verification. The independent refinement of the background and T-norm datasets provides a means of investigating the sensitivity of SVM-based speaker verification performance to the selection of each of these datasets. Using refined datasets provided improvements of 13% in min. DCF and 9% in EER over the full set of impostor examples on the 2006 SRE corpus with the majority of these gains due to refinement of the T-norm dataset. Similar trends were observed for the unseen data of the NIST 2008 SRE.
Resumo:
This work presents an extended Joint Factor Analysis model including explicit modelling of unwanted within-session variability. The goals of the proposed extended JFA model are to improve verification performance with short utterances by compensating for the effects of limited or imbalanced phonetic coverage, and to produce a flexible JFA model that is effective over a wide range of utterance lengths without adjusting model parameters such as retraining session subspaces. Experimental results on the 2006 NIST SRE corpus demonstrate the flexibility of the proposed model by providing competitive results over a wide range of utterance lengths without retraining and also yielding modest improvements in a number of conditions over current state-of-the-art.