314 resultados para VENOMS
Resumo:
A double antibody sandwich enzyme linked immunosorbent assay (ELISA) was developed to detect Echis carinatus venom in various organs (brain, heart, lungs, liver, spleen and kidneys) as well as tissue at the site of injection of mice, at various time intervals (1, 6, 12, 18, 24 h and 12 h intervals up to 72 h) after death. The assay could detect E. carinatus venom levels up to 2.5 ng/ml of tissue homogenate and the venom was detected up to 72 h after death. A highly sensitive and species-specific avidin-biotin microtitre ELISA was also developed to detect venoms of four medically important Indian snakes (Bungarus caeruleus, Naja naja, E. carinatus and Daboia russelli russelli) in autopsy specimens of human victims of snake bite. The assay could detect venom levels as low as 100 pg/ml of tissue homogenate. Venoms were detected in brain, heart, lungs, liver, spleen, kidneys, tissue at the bite area and postmortem blood. In all 12 human victim cadavers tested the culprit species were identified. As observed in mice, tissue at the site of bite area showed the highest concentration of venom and the brain showed the least. Moderate amounts of venoms were found in liver, spleen, kidneys, heart and lungs. Development of a simple, rapid and species-specific diagnostic kit based on this ELISA technique useful to clinicians is discussed.
Resumo:
Serine proteases are widely distributed in viperid snake venoms, but rare in elapid snake venoms. Previously, we have identified a fibrinogenolytic enzyme termed OhS1 from the venom of Ophiophagus hannah. The results indicated that OhS1 might be a serine
Resumo:
Three 26 kDa proteins, named as TJ-CRVP, NA-CRVP1 and NA-CRVP2, were isolated from the venoms of Trimeresurus jerdonii and Naja atra, respectively. The N-terminal sequences of TJ-CRVP and NA-CRVPs were determined. These components were devoid of the enzymatic activities tested, such as phospholipase A(2), arginine esterase, proteolysis, L-amino acid oxidase, 5' nucleotidase, acetylcholinesterase. Furthermore, these three components did not have the following biological activities: coagulant and anticoagulant activities, lethal activity, myotoxicity, hemorrhagic activity, platelet aggregation and platelet aggregation-inhibiting activities. These proteins are named as cysteine-rich venom protein (CRVP) because their sequences showed high level of similarity with mammalian cysteine-rich secretory protein (CRISP) family. Recently, some CRISP-like proteins were also isolated from several different snake venoms, including Agkistrodon blomhoffi, Trimeresurus flavoviridis, Lanticauda semifascita and king cobra. We presumed that CRVP might be a common component in snake venoms. Of particular interest, phylogenetic analysis and sequence alignment showed that NA-CRVP1 and ophanin, both from elapid snakes, share higher similarity with CRVPs from Viperidae snakes. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, three kinds of snake venoms and lour kinds of enzymes (phospholipase A(2), fibrinolytic enzyme, arginine esterase and L-amino acid oxidase) isolated from the snake venom were analyzed. As the snake venom was different, the MALDI/TOF/MS showed difference, The MALDI/TOF/MS determination results could be affected Ly the concentrations of snake venom enzymes, And the mechanisms of desorption and ionization was also given in this study, By using MALDI/TOF/MS we obtained the accurate molecular weights and homogeneities of the enzymes. The apparent characteristics of the positive MALDI/TOF/MS of enzymes composed by two subunits were also given out, The results showed that MALDI/TOF/MS is an effective analytic method for discovering new components from snake venom complexes. And it is reliable to use this method to determine the molecular weights and purifies of protein molecules.
Resumo:
We report the isolation and structural characterization of two neuromedin S (NmS) analogs, (NmS-17 and NmS-33), from the dermal venoms of Eurasian bombinid toads. NmS is a novel neuromedin U (NmU)-related peptide with potent anorexigenic and circadian rhythm-modulating properties recently discovered in mammals. Cloning of NmS precursor-encoding cDNAs from skin venom-derived libraries revealed the presence of a high degree of transcript splice variation comparable to that found previously for NmU in both amphibian skin and mammalian brain. Synthetic replicates of both amphibian NmS peptides evoked robust and dose-dependent transient increases in intracellular calcium ion concentrations in CHO cells that had been stably transfected with either FM-3/GPR66 or FM-4/TGR-1 human NmU receptors. The potency and efficacy of these amphibian skin peptides at such receptors were comparable to those observed with human NmS and rat NmS. These data show that NmS and NmU genes had already diverged at the level of the Amphibia and that differential splicing of their transcribed mRNAs has been highly conserved throughout tetrapod vertebrate evolution indicative of fundamental biological function. NmS is additionally a novel neuropeptide homolog that can be added to the biologically active peptide arsenal of amphibian venom/defensive skin secretions.
Resumo:
While structural studies of reptile venom toxins can be achieved using lyophilized venom samples, until now the cloning of precursor cDNAs required sacrifice of the specimen for dissection of the venom glands. Here we describe a simple and rapid technique that unmasks venom protein mRNAs present in lyophilized venom samples. To illustrate the technique we have RT-PCR-amplified a range of venom protein transcripts from cDNA libraries derived from the venoms of a hemotoxic snake, the Chinese copperhead (Deinagkistrodon acutus), a neurotoxic snake, the black mamba (Dendroaspis polylepis), and a venomous lizard, the Gila monster (Heloderma suspectum). These include a metalloproteinase and phospholipase A2 from D. acutus, a potassium channel blocker, dendrotoxin K, from D. polylepis, and exendin-4 from H. suspectum. These findings imply that the apparent absence and/or lability of mRNA in complex biological matrices is not always real and paves the way for accelerated acquisition of molecular genetic data on venom toxins for scientific and potential therapeutic purposes without sacrifice of endangered herpetofauna.
Resumo:
A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.
Resumo:
Helokinestatins 1–6 constitute a family of bradykinin antagonist peptides originally isolated from the venoms of the Gila Monster, Heloderma suspectum and the Mexican beaded lizard, Heloderma horridum. Here we report the identification, isolation and preliminary pharmacological characterization of two novel tridecapeptides, named helokinestatin-7S (FDDDSTELILEPR – 1550 Da) and helokinestatin-7H (FDDDSRKLILEPR – 1604 Da), whose primary structures were predicted from cDNAs cloned from venom libraries of respective Heloderma lizards. Computed molecular masses of putative helokinestatin-7 peptides were used as tools to locate these peptides in archived LC/MS fractions from respective venoms and sequences were confirmed by MS/MS fragmentation. A synthetic replicate of helokinestatin-7H was found to antagonize the relaxation effect of bradykinin on rat arterial smooth muscle but to have no measurable effects alone. In contrast, synthetic helokinestatin-7S was found to directly contract this preparation. Studies on related natural peptides with subtle differences in primary structure can provide the tools for structure/activity studies in pharmacological investigations directed toward unraveling the molecular basis of venom toxicity and for the evaluation of potential therapeutic leads.
Resumo:
C-type lectin-like proteins (CTLPs) isolated from snake venoms are the largest and most complex non-mammalian vertebrate C-type lectin-like domain family. In the present study, we simultaneously amplified four cDNAs encoding different types of CTLP subunits from the venoms of two different species of snakes by RT-PCR with a single sense primer and a nested universal primer - two CTLP subunit-encoding cDNAs were cloned from Deinagkistrodon acutus venom and two from Agkistrodon halys Pallas venom. All four cloned CTLP subunits exhibited typical motifs in their corresponding domain regions but with relatively-low sequence similarities to each other. Compared with previously-published CTLPs, the four cloned CTLPs subunits showed slight variations in the calcium-binding sites and the disulphide bonding patterns. To our knowledge, these data constitute the first example of co-expression of CTLP platelet glycoprotein Ib-binding subunits and coagulation factors in Agkistrodon halys Pallas venom.
Resumo:
Snake venom constitutes one of the most complex mixtures of naturally-occurring toxic proteins/polypeptides and a large number of these possess very profound biological activities. Disintegrins, that are commonly found in viper venoms, are low molecular weight proteins that usually contain an -Arg-Gly-Asp- (-RGD-) motif that is known to be involved in cell adhesion ligand recognition, binding specifically to cell surface integrin receptors and also exhibiting platelet anti-aggregation activity.
Here, we report for the first time, the successful cloning of three cDNAs encoding disintegrin precursors from lyophilised venom-derived libraries of Atheris chlorechis, Atheris nitschei and Atheris squamigera, respectively. All of these disintegrins belong to the short-coding class and all exhibit high degrees of structural identity, both in their amino acid sequences and in the arrangement of their functional domains. Mass spectrometric analyses of the HPLC-separated/in-gel digested venom proteins was performed to characterise the mature disintegrins as expressed in the venom proteome. Studies on both the structures and conserved sites within these disintegrins are of considerable theoretical interest in the field of biological evolution and in the development of new research tools or novel templates for drug design.
Resumo:
It has been previously shown that octopus venoms contain novel tachykinin peptides that despite being isolated from an invertebrate, contain the motifs characteristic of vertebrate tachykinin peptides rather than being more like conventional invertebrate tachykinin peptides. Therefore, in this study we examined the effect of three variants of octopus venom tachykinin peptides on invertebrate and vertebrate tissues. While there were differential potencies between the three peptides, their relative effects were uniquely consistent between invertebrate and vertebrae tissue assays. The most potent form (OCT-TK-III) was not only the most anionically charged but also was the most structurally stable. These results not only reveal that the interaction of tachykinin peptides is more complex than previous structure–function theories envisioned, but also reinforce the fundamental premise that animal venoms are rich resources of novel bioactive molecules, which are useful investigational ligands and some of which may be useful as lead compounds for drug design and development.
Resumo:
1. The comparison of molecular exclusion cromatography profiles of venoms from sting apparatuses of Apis mellifera ligustica, Apis mellifera adansonii and Africanized honey-bees in Sephadex G-100 revealed both qualitative and quantitative differences.2. The venoms from A.m. ligustica and A.m. adansonii presented, respectively, three and two peaks characteristic of each sub-species, while Africanized honey-bee was characterized by the absence of eight peaks common to the former.3. The polypeptides with M(r) in the range from 100,000 to 7500 da correspond respectively to 62.0%, 66.6% and 68.7% of total proteins from the venon of A.m. ligustica, A.m. adansonii and Africanized honey-bees, while the peptidic fraction with M(r) range from 4100 to 2000 da corresponds to 11.4%, 32.4% and 10.2% of venom protein, respectively.