956 resultados para VEHICULAR NETWORKS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Road traffic accidents can be reduced by providing early warning to drivers through wireless ad hoc networks. When a vehicle detects an event that may lead to an imminent accident, the vehicle disseminates emergency messages to alert other vehicles that may be endangered by the accident. In many existing broadcast-based dissemination schemes, emergency messages may be sent to a large number of vehicles in the area and can be propagated to only one direction. This paper presents a more efficient context aware multicast protocol that disseminates messages only to endangered vehicles that may be affected by the emergency event. The endangered vehicles can be identified by calculating the interaction among vehicles based on their motion properties. To ensure fast delivery, the dissemination follows a routing path obtained by computing a minimum delay tree. The multicast protocol uses a generalized approach that can support any arbitrary road topology. The performance of the multicast protocol is compared with existing broadcast protocols by simulating chain collision accidents on a typical highway. Simulation results show that the multicast protocol outperforms the other protocols in terms of reliability, efficiency, and latency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we analyse the effects of highway traffic flow parameters like vehicle arrival rate and density on the performance of Amplify and Forward (AF) cooperative vehicular networks along a multi-lane highway under free flow state. We derive analytical expressions for connectivity performance and verify them with Monte-Carlo simulations. When AF cooperative relaying is employed together with Maximum Ratio Combining (MRC) at the receivers the average route error rate shows 10-20 fold improvement compared to direct communication. A 4-8 fold increase in maximum number of traversable hops can also be observed at different vehicle densities when AF cooperative communication is used to strengthen communication routes. However the theorical upper bound of maximum number of hops promises higher performance gains.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The requirement of isolated relays is one of the prime obstacles in utilizing sequential slotted cooperative protocols for Vehicular Ad-hoc Networks (VANET). Significant research advancement has taken place to improve the diversity multiplexing trade-off (DMT) of cooperative protocols in conventional mobile networks without much attention on vehicular ad-hoc networks. We have extended the concept of sequential slotted amplify and forward (SAF) protocols in the context of urban vehicular ad-hoc networks. Multiple Input Multiple Output (MIMO) reception is used at relaying vehicular nodes to isolate the relays effectively. The proposed approach adds a pragmatic value to the sequential slotted cooperative protocols while achieving attractive performance gains in urban VANETs. We have analysed the DMT bounds and the outage probabilities of the proposed scheme. The results suggest that the proposed scheme can achieve an optimal DMT similar to the DMT upper bound of the sequential SAF. Furthermore, the outage performance of the proposed scheme outperforms the SAF protocol by 2.5 dB at a target outage probability of 10-4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid development in the field of lighting and illumination allows low energy consumption and a rapid growth in the use, and development of solid-state sources. As the efficiency of these devices increases and their cost decreases there are predictions that they will become the dominant source for general illumination in the short term. The objective of this thesis is to study, through extensive simulations in realistic scenarios, the feasibility and exploitation of visible light communication (VLC) for vehicular ad hoc networks (VANETs) applications. A brief introduction will introduce the new scenario of smart cities in which visible light communication will become a fundamental enabling technology for the future communication systems. Specifically, this thesis focus on the acquisition of several, frequent, and small data packets from vehicles, exploited as sensors of the environment. The use of vehicles as sensors is a new paradigm to enable an efficient environment monitoring and an improved traffic management. In most cases, the sensed information must be collected at a remote control centre and one of the most challenging aspects is the uplink acquisition of data from vehicles. My thesis discusses the opportunity to take advantage of short range vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications to offload the cellular networks. More specifically, it discusses the system design and assesses the obtainable cellular resource saving, by considering the impact of the percentage of vehicles equipped with short range communication devices, of the number of deployed road side units, and of the adopted routing protocol. When short range communications are concerned, WAVE/IEEE 802.11p is considered as standard for VANETs. Its use together with VLC will be considered in urban vehicular scenarios to let vehicles communicate without involving the cellular network. The study is conducted by simulation, considering both a simulation platform (SHINE, simulation platform for heterogeneous interworking networks) developed within the Wireless communication Laboratory (Wilab) of the University of Bologna and CNR, and network simulator (NS3). trying to realistically represent all the wireless network communication aspects. Specifically, simulation of vehicular system was performed and introduced in ns-3, creating a new module for the simulator. This module will help to study VLC applications in VANETs. Final observations would enhance and encourage potential research in the area and optimize performance of VLC systems applications in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dedicated short range communications (DSRC) has been regarded as one of the most promising technologies to provide robust communications for large scale vehicle networks. It is designed to support both road safety and commercial applications. Road safety applications will require reliable and timely wireless communications. However, as the medium access control (MAC) layer of DSRC is based on the IEEE 802.11 distributed coordination function (DCF), it is well known that the random channel access based MAC cannot provide guaranteed quality of services (QoS). It is very important to understand the quantitative performance of DSRC, in order to make better decisions on its adoption, control, adaptation, and improvement. In this paper, we propose an analytic model to evaluate the DSRC-based inter-vehicle communication. We investigate the impacts of the channel access parameters associated with the different services including arbitration inter-frame space (AIFS) and contention window (CW). Based on the proposed model, we analyze the successful message delivery ratio and channel service delay for broadcast messages. The proposed analytical model can provide a convenient tool to evaluate the inter-vehicle safety applications and analyze the suitability of DSRC for road safety applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless-communication technology can be used to improve road safety and to provide Internet access inside vehicles. This paper proposes a cross-layer protocol called coordinated external peer communication (CEPEC) for Internet-access services and peer communications for vehicular networks. We assume that IEEE 802.16 base stations (BS) are installed along highways and that the same air interface is equipped in vehicles. Certain vehicles locating outside of the limited coverage of their nearest BSs can still get access to the Internet via a multihop route to their BSs. For Internet-access services, the objective of CEPEC is to increase the end-to-end throughput while providing a fairness guarantee in bandwidth usage among road segments. To achieve this goal, the road is logically partitioned into segments of equal length. A relaying head is selected in each segment that performs both local-packet collecting and aggregated packets relaying. The simulation results have shown that the proposed CEPEC protocol provides higher throughput with guaranteed fairness in multihop data delivery in vehicular networks when compared with the purely IEEE 802.16-based protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Throughput plays a vital role for data transfer in Vehicular Networks which is useful for both safety and non-safety applications. An algorithm that adapts to mobile environment by using Context information has been proposed in this paper. Since one of the problems of existing rate adaptation algorithm is underutilization of link capacity in Vehicular environments, we have demonstrated that in wireless and mobile environments, vehicles can adapt to high mobility link condition and still perform better due to regular vehicles that will be out of communication range due to range checking and then de-congest the network thereby making the system perform better since fewer vehicles will contend for network resources. In this paper, we have design, implement and analyze ACARS, a more robust algorithm with significant increase in throughput performance and energy efficiency in the mist of high mobility of vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vehicular networks, also known as VANETs, are an ad-hoc network formed by vehicles and road-side units. Nowadays they have been attracting big interest both from researchers as from the automotive industry. With the upcoming of automotive specific operating systems and self-driving cars, the use of applications on vehicles and the integration with common mobile devices is becoming a big part of VANETs. Although many advances have been made on this field, there is still a big discrepancy between the communication layer services provided by VANETs and the user level services, namely those accessible through mobile applications on other networks and technologies. Users and developers are accustomed to user-to-user or user-tobusiness communication without explicit concerns related with the available communication transport layer. Such is not possible in VANETs since people may use more than one vehicle. However, to send a message to a specific user in these networks, there is a need to know the ID of the vehicle where the user is, meaning that there is a lack of services that map each individual user to VANETs endpoint (vehicle identification). This dissertation work proposes VANESS, a naming service as a resource to support user-to-user communication within a heterogeneous scenario comprising typical ISP scenario and VANETs focused on mobile devices. The proposed system is able to map the user to an end point either locally (i.e. there is not internet connection at all), online (i.e. system is not in a vehicular network but has direct internet connection) and using a gateway (i.e. the system is in a vehicular network where some of the nodes have internet access and will act as a gateway). VANESS was fully implemented on android OS with results proving his viability, and partially on iOS showing its multiplatform capabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing research in vehicular network solutions provided the rise of interaction in these highly dynamic environments in the market. The developed architectures do not usually focus, however, in security aspects. Common security strategies designed for the Internet require IP. Since nodes' addresses in a vehicular network are too dynamic, such solutions would require cumbersome negotiations, which would make them unsuitable to these environments. The objective of this dissertation is to develop, and test a scalable, lightweight, layer 3 security protocol for vehicular networks, in which nodes of the network are able to set up long-term security associations with a Home Network, avoiding session renegotiations due to lack of connectivity and reduce the protocol stacking. This protocol allows to provide security independent of the nodes (vehicles) position, of its addressing and of the established path to access the Internet, allowing the mobility of vehicles and of its active sessions seamlessly without communication failures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays there is a huge evolution in the technological world and in the wireless networks. The electronic devices have more capabilities and resources over the years, which makes the users more and more demanding. The necessity of being connected to the global world leads to the arising of wireless access points in the cities to provide internet access to the people in order to keep the constant interaction with the world. Vehicular networks arise to support safety related applications and to improve the traffic flow in the roads; however, nowadays they are also used to provide entertainment to the users present in the vehicles. The best way to increase the utilization of the vehicular networks is to give to the users what they want: a constant connection to the internet. Despite of all the advances in the vehicular networks, there were several issues to be solved. The presence of dedicated infrastructure to vehicular networks is not wide yet, which leads to the need of using the available Wi-Fi hotspots and the cellular networks as access networks. In order to make all the management of the mobility process and to keep the user’s connection and session active, a mobility protocol is needed. Taking into account the huge number of access points present at the range of a vehicle for example in a city, it will be beneficial to take advantage of all available resources in order to improve all the vehicular network, either to the users and to the operators. The concept of multihoming allows to take advantage of all available resources with multiple simultaneous connections. This dissertation has as objectives the integration of a mobility protocol, the Network-Proxy Mobile IPv6 protocol, with a host-multihoming per packet solution in order to increase the performance of the network by using more resources simultaneously, the support of multi-hop communications, either in IPv6 or IPv4, the capability of providing internet access to the users of the network, and the integration of the developed protocol in the vehicular environment, with the WAVE, Wi-Fi and cellular technologies. The performed tests focused on the multihoming features implemented on this dissertation, and on the IPv4 network access for the normal users. The obtained results show that the multihoming addition to the mobility protocol improves the network performance and provides a better resource management. Also, the results show the correct operation of the developed protocol in a vehicular environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The finite-signal-to-noise ratio (SNR) diversity-multiplexing trade-off (DMT) of cooperative diversity protocols are investigated in vehicular networks based on cascaded Rayleigh fading. Lower bounds of DMT at finite SNR for orthogonal and non-orthogonal protocols are derived. The results showcase the first look into the achievable DMT trade-off of cooperative diversity in volatile vehicular environments. It is shown that the diversity gains are significantly suboptimal at realistic SNRs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The increasing diffusion of wireless-enabled portable devices is pushing toward the design of novel service scenarios, promoting temporary and opportunistic interactions in infrastructure-less environments. Mobile Ad Hoc Networks (MANET) are the general model of these higly dynamic networks that can be specialized, depending on application cases, in more specific and refined models such as Vehicular Ad Hoc Networks and Wireless Sensor Networks. Two interesting deployment cases are of increasing relevance: resource diffusion among users equipped with portable devices, such as laptops, smart phones or PDAs in crowded areas (termed dense MANET) and dissemination/indexing of monitoring information collected in Vehicular Sensor Networks. The extreme dynamicity of these scenarios calls for novel distributed protocols and services facilitating application development. To this aim we have designed middleware solutions supporting these challenging tasks. REDMAN manages, retrieves, and disseminates replicas of software resources in dense MANET; it implements novel lightweight protocols to maintain a desired replication degree despite participants mobility, and efficiently perform resource retrieval. REDMAN exploits the high-density assumption to achieve scalability and limited network overhead. Sensed data gathering and distributed indexing in Vehicular Networks raise similar issues: we propose a specific middleware support, called MobEyes, exploiting node mobility to opportunistically diffuse data summaries among neighbor vehicles. MobEyes creates a low-cost opportunistic distributed index to query the distributed storage and to determine the location of needed information. Extensive validation and testing of REDMAN and MobEyes prove the effectiveness of our original solutions in limiting communication overhead while maintaining the required accuracy of replication degree and indexing completeness, and demonstrates the feasibility of the middleware approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A key problem with IEEE 802.11 technology is adaptation of the transmission rates to the changing channel conditions, which is more challenging in vehicular networks. Although rate adaptation problem has been extensively studied for static residential and enterprise network scenarios, there is little work dedicated to the IEEE 802.11 rate adaptation in vehicular networks. Here, the authors are motivated to study the IEEE 802.11 rate adaptation problem in infrastructure-based vehicular networks. First of all, the performances of several existing rate adaptation algorithms under vehicle network scenarios, which have been widely used for static network scenarios, are evaluated. Then, a new rate adaptation algorithm is proposed to improve the network performance. In the new rate adaptation algorithm, the technique of sampling candidate transmission modes is used, and the effective throughput associated with a transmission mode is the metric used to choose among the possible transmission modes. The proposed algorithm is compared to several existing rate adaptation algorithms by simulations, which shows significant performance improvement under various system and channel configurations. An ideal signal-to-noise ratio (SNR)-based rate adaptation algorithm in which accurate channel SNR is assumed to be always available is also implemented for benchmark performance comparison.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, the embracement of smart devices carried or worn by people have transformed how society interact with one another. This trend has also been observed in the advancement of vehicular networks. Here, developments in wireless technologies for vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications are leading to a new generation of vehicular networks. A natural extension of both types of networks will be their eventual wireless integration. Both people and vehicles will undoubtedly form integral parts of future mobile networks of people and things. Central to this will be the person-to-vehicle (P2V) communications channel. As the P2V channel will be subject to different signal propagation characteristics than either type of communication system considered in isolation, it is imperative the characteristics of the wireless channel must first be fully understood. To the best of the author's knowledge, this is a topic which has not yet been addressed in the open literature. In this paper we will present our most recent research on the statistical characterization of the 5.8 GHz person-to-vehicle channel in an urban environment.