997 resultados para VEGF expression
Resumo:
Exercise-induced vessel changes modulate arterial pressure (AP) in male spontaneously hypertensive rats (SHR). Vascular endothelial growth factor (VEGF) is important for angiogenesis of skeletal muscle. The present study evaluated the time course of VEGF and angiogenesis after short- and long-term exercise training of female SHR and Wistar Kyoto (WKY) rats, 8-9 weeks (200-250 g). Rats were allocated to daily training or remained sedentary for 3 days (N = 23) or 13 weeks (N = 23). After training, the carotid artery was catheterized for AP measurements. Locomotor (tibialis anterior and gracilis) and non-locomotor skeletal muscles (temporalis) were harvested and prepared for histologic and protein expression analyses. Training increased treadmill performance by all groups (SHR = 28%, WKY = 64%, 3 days) and (SHR = 141%, WKY = 122%, 13 weeks). SHR had higher values of AP than WKY (174 ± 4 vs 111 ± 2 mmHg) that were not altered by training. Three days of running increased VEGF expression (SHR = 28%, WKY = 36%) simultaneously with an increase in capillary-to-fiber ratio in gracilis muscle (SHR = 19%, WKY = 15%). In contrast, 13 weeks of training increased gracilis capillary-to-fiber ratio (SHR = 18%, WKY = 19%), without simultaneous changes in VEGF expression. Training did not change VEGF expression and capillarity of temporalis muscle. We conclude that training stimulates time- and tissue-dependent VEGF protein expression, independent of pressure levels. VEGF triggers angiogenesis in locomotor skeletal muscle shortly after the exercise starts, but is not involved in the maintenance of capillarity after long-term exercise in female rats.
beta 1 Integrin and VEGF expression in an experimental model of brain tissue heterotopia in the lung
Resumo:
Integrins and vascular endothelial growth factor (VEGF) are crucially involved in interaction, proliferation, migration, and survival of the cells. However, there is no report in the literature about beta 1 integrin and VEGF expression in heterotopic brain tissue. The aim of this study was to assess beta 1 integrin and VEGF expression in experimental brain tissue heterotopia in the lung during both fetal and neonatal periods. Twenty-four pregnant female Swiss mice were used to induce brain tissue heterotopia on the 15th gestational day. Briefly, the brain of one fetus of each dam was extracted, disaggregated, and injected into the right hemithorax of siblings. Six of these fetuses with pulmonary brain tissue implantation were collected on the 18th gestational day (group E18) and six other on the eighth postnatal day (group P8). Immunohistochemistry of the fetal trunks showed implantation of glial fibrillary acidic protein- and neuronal nuclei-positive heterotopic brain tissue, which were also positive for beta 1 integrin and VEGF in both groups E18 and P8. These results indicate that brain tissue heterotopia during fetal and postnatal period is able to complete integration with the lung tissue as well as to induce vascular proliferation which are the necessary steps for a successful implantation.
Resumo:
Background: Vascular endothelial growth factor (VEGF) is a macromolecule of importance in inflammation that has been implicated in periodontitis. The aims of this study were to investigate VEGF expression during the progression of periodontal disease and to evaluate the effect of a preferential cyclooxygenase (COX)-2 inhibitor meloxicam on VEGF expression and alveolar bone loss in experimentally induced periodontitis. Methods: A total of 120 Wistar rats were randomly separated into groups 1 (control) and 2 (meloxicam, 3 mg/kg/day, intraperitoneally, for 3, 7, 14, or 30 days). Silk ligatures were placed at the gingival margin level of the lower right first molar of all rats. VEGF expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR), Western blot (WB), and immunohistochemical (IHC) analyses. The hemiarcades were processed for histopathologic analysis. RT-PCR and WB results were submitted to analysis of variance, the Tukey test, and Pearson correlation analysis (P<0.05). Results: A reduction in alveolar bone resorption was observed in the meloxicam-treated group compared to the control group at all periods studied. There was a positive correlation between COX-2 mRNA and VEGF mRNA in the gingival tissues and periodontal disease (R = 0.80; P = 0.026). Meloxicam significantly reduced the increased mRNA VEGF expression in diseased tissues after 14 days of treatment (P = 0.023). Some alterations in VEGF receptor I mRNA expression were observed, but these were not statistically significant. VEGF protein expression in WB experiments was significantly higher in diseased sites compared to healthy sites (P<0.05). After 14 days of treatment with meloxicam, an important decrease in VEGF protein expression was detected in diseased tissues (P = 0.08). Qualitative IHC analysis revealed that VEGF protein expression was higher in diseased tissues and decreased in tissues from rats treated with meloxicam. Conclusions: The present data suggest an important role for VEGF in the progression of periodontal disease. Systemic therapy with meloxicam can modify the progression of experimentally induced periodontitis in rats by reducing VEGF expression and alveolar bone loss.
Resumo:
Background: Proteinuria (PT) with SRL appears not only after conversion from a calcineurin inhibitor (CI), but also in de novo patients. The PT may be related to a hemodynamic effect of CI withdrawal or to a direct effect of SRL in glomerulus (GL). Recently an association between PT in SRL patients and FSGS lesions has been described. It is also known that SRL decrease VEGF synthesis and experimental data suggest that VEGF is essential to podocyte survival and differentiation. Aim: To determine if glomerular lesions and PT in SRL patients could be related to altered glomerular VEGF expression. Material and methods: We evaluated glomerular VEGF expression in 10 biopsies: A-allograft kidney in backtable (n=3); B-native normal kidney (n=1); C-native kidney with FSGS lesions (n=2); D-allograft kidney with FSGS lesions from proteinuric patients under SRL after conversion from CI (n=3); E-allograft kidney in proteinuric patient under SRL with a membranous glomerulonephritis (n=1). We employed indirect immunohistochemistry in paraffin-embedded sections using a mouse monoclonal antibody against human VEGF-C1 (Santa Cruz). Results: The controls biopsies (A; B) showed normal global VEGF expression, with strong podocyte staining. The VEGF expression in the group C was similar to the controls, although no FSGS lesions were observed in the stained GL. The group D showed normal VEGF expression in the apparently normal GL, hypertrophied podocytes with reduction of VEGF in anomalous GL, and no staining in slcerotic lesions. We observed a gradual reduction of VEGF expression with progressive dedifferentiation of podocytes. In the group E the VEGF was globally reduced, with some hypertrophied podocytes expressing decreased VEGF. Conclusion: We confirmed the diminished VEGF expression in injured podocytes of SRL patients.This decreased expression may result from a direct effect of SRL and precede the appearance of FSGS lesions and PT. Further studies are needed with greater number of cases and controls, including early biopsies of patients under SRL.
Resumo:
Purpose:In the retina, the balance between pro- and anti-angiogenic factors is critical for angiogenesis control but is also involved in cell survival and maintenance. For instance, the anti-angiogenic factor PEDF is neuroprotective for photoreceptors (PRs) in models of retinal degeneration. We previously reported upregulation of VEGF (24h to 48h post lesion) in the light-damage (LD) model. Furthermore, systemic delivery of PEDF, as well as lentiviral gene transfer of an anti-VEGF antibody rescue PRs from cell death. Studies in vitro show that VEGF induces retinal endothelial cells apoptosis via the alteration of the Akt1/p38 MAPK signalling pathway under hypoxic conditions. Thus, in this study, we investigate the effect of high levels of VEGF on retinal pigmented epithelium (RPE) permeability and molecular targets expression after light-induced PR degeneration. Methods:To characterize the action of VEGF in the retina during the course of LD, we exposed adult Balb/c mice to 5'000 lux for 1h, and we collected neural retinas and eye-cups (containing RPE) at different time points after the LD. We analysed protein expression by Elisa and Western blotting. In order to study RPE cell permeability after the LD we stained β-catenin on flat mounted RPE. Results:In the neural retina, preliminary results indicate that high levels of VEGF induce a significant upregulation of VEGF receptor 2, whereas VEGF receptor 1 expression is decreased. Concomitantly with VEGF upregulation, LD increases the Src phosphorylation between 24h to 48h. Furthermore, we observe that β-catenin translocates to the cytoplasm of RPE cells between 24h to 36h after the lesion, indicating an increase on the RPE permeability, which could contribute indirectly to the deleterious effect of VEGF observed during light-induced PR apoptosis. Conclusions:This study further involves VEGF in LD and highlights the prime importance of angiogenic factor balance for PR survival. Our results suggest that PR apoptosis is augmented by RPE cell permeability, which may induce high level of VEGF and could be deleterious. The specific action of RPE permeability on PR survival and the role of Src in the retina are under investigation.
Resumo:
Exercise-induced vessel changes modulate arterial pressure (AP) in male spontaneously hypertensive rats (SHR). Vascular endothelial growth factor (VEGF) is important for angiogenesis of skeletal muscle. The present study evaluated the time course of VEGF and angiogenesis after short- and long-term exercise training of female SHR and Wistar Kyoto (WKY) rats, 8-9 weeks (200-250 g). Rats were allocated to daily training or remained sedentary for 3 days (N = 23) or 13 weeks (N = 23). After training, the carotid artery was catheterized for AP measurements. Locomotor (tibialis anterior and gracilis) and non-locomotor skeletal muscles (temporalis) were harvested and prepared for histologic and protein expression analyses. Training increased treadmill performance by all groups (SHR = 28%, WKY = 64%, 3 days) and (SHR = 141%, WKY = 122%, 13 weeks). SHR had higher values of AP than WKY (174 ± 4 vs 111 ± 2 mmHg) that were not altered by training. Three days of running increased VEGF expression (SHR = 28%, WKY = 36%) simultaneously with an increase in capillary-to-fiber ratio in gracilis muscle (SHR = 19%, WKY = 15%). In contrast, 13 weeks of training increased gracilis capillary-to-fiber ratio (SHR = 18%, WKY = 19%), without simultaneous changes in VEGF expression. Training did not change VEGF expression and capillarity of temporalis muscle. We conclude that training stimulates time- and tissue-dependent VEGF protein expression, independent of pressure levels. VEGF triggers angiogenesis in locomotor skeletal muscle shortly after the exercise starts, but is not involved in the maintenance of capillarity after long-term exercise in female rats.
Resumo:
Exercise-induced vessel changes modulate arterial pressure (AP) in male spontaneously hypertensive rats (SHR). Vascular endothelial growth factor (VEGF) is important for angiogenesis of skeletal muscle. The present study evaluated the time course of VEGF and angiogenesis after short- and long-term exercise training of female SHR and Wistar Kyoto (WKY) rats, 8-9 weeks (200-250 g). Rats were allocated to daily training or remained sedentary for 3 days (N = 23) or 13 weeks (N = 23). After training, the carotid artery was catheterized for AP measurements. Locomotor (tibialis anterior and gracilis) and non-locomotor skeletal muscles (temporalis) were harvested and prepared for histologic and protein expression analyses. Training increased treadmill performance by all groups (SHR = 28%, WKY = 64%, 3 days) and (SHR = 141%, WKY = 122%, 13 weeks). SHR had higher values of AP than WKY (174 ± 4 vs 111 ± 2 mmHg) that were not altered by training. Three days of running increased VEGF expression (SHR = 28%, WKY = 36%) simultaneously with an increase in capillary-to-fiber ratio in gracilis muscle (SHR = 19%, WKY = 15%). In contrast, 13 weeks of training increased gracilis capillary-to-fiber ratio (SHR = 18%, WKY = 19%), without simultaneous changes in VEGF expression. Training did not change VEGF expression and capillarity of temporalis muscle. We conclude that training stimulates time- and tissue-dependent VEGF protein expression, independent of pressure levels. VEGF triggers angiogenesis in locomotor skeletal muscle shortly after the exercise starts, but is not involved in the maintenance of capillarity after long-term exercise in female rats.
Resumo:
Background: Vascular endothelial growth factor (VEGF) is a macromolecule of importance in inflammation that has been implicated in periodontitis. The aims of this study were to investigate VEGF expression during the progression of periodontal disease and to evaluate the effect of a preferential cyclooxygenase (COX)-2 inhibitor meloxicam on VEGF expression and alveolar bone loss in experimentally induced periodontitis.Methods: A total of 120 Wistar rats were randomly separated into groups 1 (control) and 2 (meloxicam, 3 mg/kg/day, intraperitoneally, for 3, 7, 14, or 30 days). Silk ligatures were placed at the gingival margin level of the lower right first molar of all rats. VEGF expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR), Western blot (WB), and immunohistochemical (IHC) analyses. The hemiarcades were processed for histopathologic analysis. RT-PCR and WB results were submitted to analysis of variance, the Tukey test, and Pearson correlation analysis (P<0.05).Results: A reduction in alveolar bone resorption was observed in the meloxicam-treated group compared to the control group at all periods studied. There was a positive correlation between COX-2 mRNA and VEGF mRNA in the gingival tissues and periodontal disease (R = 0.80; P = 0.026). Meloxicam significantly reduced the increased mRNA VEGF expression in diseased tissues after 14 days of treatment (P = 0.023). Some alterations in VEGF receptor I mRNA expression were observed, but these were not statistically significant. VEGF protein expression in WB experiments was significantly higher in diseased sites compared to healthy sites (P<0.05). After 14 days of treatment with meloxicam, an important decrease in VEGF protein expression was detected in diseased tissues (P = 0.08). Qualitative IHC analysis revealed that VEGF protein expression was higher in diseased tissues and decreased in tissues from rats treated with meloxicam.Conclusions: The present data suggest an important role for VEGF in the progression of periodontal disease. Systemic therapy with meloxicam can modify the progression of experimentally induced periodontitis in rats by reducing VEGF expression and alveolar bone loss.
Resumo:
OBJECTIVE: We sought to investigate the effects of antenatal retinoic acid on the pulmonary vasculature and vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFR) expression in a nitrofen-induced congenital diaphragmatic hernia (CDH) model. STUDY DESIGN: Rat fetuses were exposed to nitrofen at gestational day 9.5 and/or all-trans retinoic acid (ATRA) at gestational days 18.5-20.5. We assessed lung growth, airway, and vascular morphometry. VEGF, VEGFR1, and VEGFR2 expression was analyzed by Western blotting and immunohistochemistry. Continuous data were analyzed by analysis of variance and Kruskal-Wallis test. RESULTS: CDH decreased lung to body weight ratio, increased mean linear intercept and mean transection length/airspace, and decreased mean airspace cord length. ATRA did not affect lung growth or morphometry. CDH increased proportional medial wall thickness of arterioles while ATRA reduced it. ATRA recovered expression of VEGF and receptors, which were reduced in CDH. CONCLUSION: Retinoic acid and VEGF may provide pathways for preventing pulmonary hypertension in CDH.
Resumo:
The concept of vascular pruning, the "cuting-off" of vessels, is gaining importance due to expansion of angio-modulating therapies. The proangiogenic effects of vascular endothelial growth factor (VEGF) are broadly described, but the mechanisms of structural alterations by its downregulation are not known.
Resumo:
We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously “on,” tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.
Resumo:
Ocular neovascularisation is the leading cause of blindness in developed countries and the most potent angiogenic factor associated with neovascularisation is vascular endothelial growth factor (VEGF). We have previously described a sense oligonucleotide (ODN-1) that possesses anti-human and rat VEGF activity. This paper describes the synthesis of lipid-lysine dendrimers and their subsequent ability to delivery ODN-1 to its target and mediate a reduction in VEGF concentration both in vitro and in vivo. Positively charged dendrimers were used to deliver ODN-1 into the nucleus of cultured D407 cells. The effects on VEGF mRNA transcription and protein expression were analysed using RT-PCR and ELISA, respectively. The most effective dendrimers in vitro were further investigated in vivo using an animal model of choroidal neovascularisation (CNV). All dendrimer/ODN-1 complexes mediated in a significant reduction in VEGF expression during an initial 24 hr period (40-60%). Several complexes maintained this level of VEGF reduction during a subsequent, second 24 hr period, which indicated protection of ODN-1 from the effects of endogenous nucleases. In addition, the transfection efficiency of dendrimers that possessed 8 positive charges (chi = 81(.)51%) was significantly better (P = 0(.)0036) than those that possessed 4 positive charges (chi = 56(.)8%). RT-PCR revealed a correlation between levels of VEGF protein mRNA. These results indicated that the most effective structural combination was three branched chains of intermediate length with 8 positive charges such as that found for dendrimer 4. Dendrimer 4 and 7/ODN-1 complexes were subsequently chosen for in vivo analysis. Fluorescein angiography demonstrated that both dendrimers significantly (P < 0(.)0001) reduced the severity of laser mediated CNV for up to two months post-injection. This study demonstrated that lipophilic, charged dendrimer mediated delivery of ODN-1 resulted in the down-regulation of in vitro VEGF expression. In addition, in vivo delivery of ODN-1 by two of the dendrimers resulted in significant inhibition of CNV in an inducible rat model. Time course studies showed that the dendrimer/ODN-1 complexes remained active for up to two months indicating the dendrimer compounds provided protection against the effects of nucleases. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The prognostic relevance of different molecular markers in lung cancer is a crucial issue still worth investigating, and the specimens collected and analyzed represent a valuable source of material. Cyclin-D1, c-erbB-2 and vascular endothelial growth factor (VEGF) have shown to be promising as prognosticators in human cancer. In this study, we sought to examine the importance of Cyclin-D1, c-erbB-2 and VEGF, and to study the quantitative relationship among these factors and disease progression in metastases vs corresponding primary cancer, and metastatic vs non metastatic cancers. Material and Methods: We used immunohistochemistry and morphometric analysis to evaluate the amount of tumour staining for Cyclin-D1, c-erbB-2 and VEGF in 52 patients with surgically excised ademocarcinoma of the lung, and the outcome for our study was survival time until death from hematogenic metastases. Results: Metastasis presented lower c-erbB-2 expression than corresponding primary cancers (p=0.02). Cyclin-D1 and VEGF expression were also lower in metastases than in corresponding primary cancers, but this difference did not achieve statistical significance. Non-metastatic cancers also presented significantly lower Cyclin-D1 and c-erbB-2 expression than metastatic cancers (p<0.01 and p<0.01, respectively). Equally significant was the difference between higher c-erbB-2 expression by metastatic cancers compared to non-metastatic cancers (p=0.02). Considering survival in Kaplan-Maier analysis, Cyclin-D1 (p=0.04), c-erbB-2 (p=0.04) and VEGF (p<0.01) were important predictors of survival in metastatic cancers.
Resumo:
Early revascularization of pancreatic islet cells after transplantation is crucial for engraftment, and it has been suggested that vascular endothelial growth factor-A (VEGF-A) plays a significant role in this process. Although VEGF gene therapy can improve angiogenesis, uncontrolled VEGF secretion can lead to vascular tumor formation. Here we have explored the role of temporal VEGF expression, controlled by a tetracycline (TC)-regulated promoter, on revascularization and engraftment of genetically modified beta cells following transplantation. To this end, we modified the CDM3D beta cell line using a lentiviral vector to promote secretion of VEGF-A either in a TC-regulated (TET cells) or a constitutive (PGK cells) manner. VEGF secretion, angiogenesis, cell proliferation, and stimulated insulin secretion were assessed in vitro. VEGF secretion was increased in TET and PGK cells, and VEGF delivery resulted in angiogenesis, whereas addition of TC inhibited these processes. Insulin secretion by the three cell types was similar. We used a syngeneic mouse model of transplantation to assess the effects of this controlled VEGF expression in vivo. Time to normoglycemia, intraperitoneal glucose tolerance test, graft vascular density, and cellular mass were evaluated. Increased expression of VEGF resulted in significantly better revascularization and engraftment after transplantation when compared to control cells. In vivo, there was a significant increase in vascular density in grafted TET and PGK cells versus control cells. Moreover, the time for diabetic mice to return to normoglycemia and the stimulated plasma glucose clearance were also significantly accelerated in mice transplanted with TET and PGK cells when compared to control cells. VEGF was only needed during the first 2-3 weeks after transplantation; when removed, normoglycemia and graft vascularization were maintained. TC-treated mice grafted with TC-treated cells failed to restore normoglycemia. This approach allowed us to switch off VEGF secretion when the desired effects had been achieved. TC-regulated temporal expression of VEGF using a gene therapy approach presents a novel way to improve early revascularization and engraftment after islet cell transplantation.
Resumo:
The aim of this study was to assess vascular endothelial growth factor (VEGF) expression and microvessel density (MVD) in maxillary sinus augmentation with autogenous bone and different graft materials for evaluating their angiogenic potential.Biopsies were harvested 10 months after sinus augmentation with a combination of autogenous bone and different graft materials: hydroxyapatite (HA, n = 6 patients), demineralized freeze-dried bone allograft (DFDBA, n = 5 patients), calcium phosphate (CP, n = 5 patients), Ricinus communis polymer (n = 5 patients) and control group - autogenous bone only (n = 13 patients).In all the samples, higher intensities of VEGF expression were prevalent in the newly formed bone, while lower intensities of VEGF expression were predominant in the areas of mature bone. The highest intensity of VEGF expression in the newly formed bone was expressed by HA (P < 0.001) and CP in relation to control (P < 0.01) groups. The lowest intensities of VEGF expression in newly formed bone were shown by DFDBA and polymer groups (P < 0.05). When comparing the different grafting materials, higher MVD were found in the newly formed bone around control, HA and CP (P < 0.001).Various graft materials could be successfully used for sinus floor augmentation; however, the interactions between bone formation and angiogenesis remain to be fully characterized.