964 resultados para VAR errors
Resumo:
This paper considers the general problem of Feasible Generalized Least Squares Instrumental Variables (FG LS IV) estimation using optimal instruments. First we summarize the sufficient conditions for the FG LS IV estimator to be asymptotic ally equivalent to an optimal G LS IV estimator. Then we specialize to stationary dynamic systems with stationary VAR errors, and use the sufficient conditions to derive new moment conditions for these models. These moment conditions produce useful IVs from the lagged endogenous variables, despite the correlation between errors and endogenous variables. This use of the information contained in the lagged endogenous variables expands the class of IV estimators under consideration and there by potentially improves both asymptotic and small-sample efficiency of the optimal IV estimator in the class. Some Monte Carlo experiments compare the new methods with those of Hatanaka [1976]. For the DG P used in the Monte Carlo experiments, asymptotic efficiency is strictly improved by the new IVs, and experimental small-sample efficiency is improved as well.
Resumo:
Targeted observations are generally taken in regions of high baroclinicity, but often show little impact. One plausible explanation is that important dynamical information, such as upshear tilt, is not extracted from the targeted observations by the data assimilation scheme and used to correct initial condition error. This is investigated by generating pseudo targeted observations which contain a singular vector (SV) structure that is not present in the background field or routine observations, i.e. assuming that the background has an initial condition error with tilted growing structure. Experiments were performed for a single case-study with varying numbers of pseudo targeted observations. These were assimilated by the Met Office four-dimensional variational (4D-Var) data assimilation scheme, which uses a 6 h window for observations and background-error covariances calculated using the National Meteorological Centre (NMC) method. The forecasts were run using the operational Met Office Unified Model on a 24 km grid. The results presented clearly demonstrate that a 6 h window 4D-Var system is capable of extracting baroclinic information from a limited set of observations and using it to correct initial condition error. To capture the SV structure well (projection of 0.72 in total energy), 50 sondes over an area of 1×106 km2 were required. When the SV was represented by only eight sondes along an example targeting flight track covering a smaller area, the projection onto the SV structure was lower; the resulting forecast perturbations showed an SV structure with increased tilt and reduced initial energy. The total energy contained in the perturbations decreased as the SV structure was less well described by the set of observations (i.e. as fewer pseudo observations were assimilated). The assimilated perturbation had lower energy than the SV unless the pseudo observations were assimilated with the dropsonde observation errors halved from operational values. Copyright © 2010 Royal Meteorological Society
Resumo:
For data assimilation in numerical weather prediction, the initial forecast-error covariance matrix Pf is required. For variational assimilation it is particularly important to prescribe an accurate initial matrix Pf, since Pf is either static (in the 3D-Var case) or constant at the beginning of each assimilation window (in the 4D-Var case). At large scales the atmospheric flow is well approximated by hydrostatic balance and this balance is strongly enforced in the initial matrix Pf used in operational variational assimilation systems such as that of the Met Office. However, at convective scales this balance does not necessarily hold any more. Here we examine the extent to which hydrostatic balance is valid in the vertical forecast-error covariances for high-resolution models in order to determine whether there is a need to relax this balance constraint in convective-scale data assimilation. We use the Met Office Global and Regional Ensemble Prediction System (MOGREPS) and a 1.5 km resolution version of the Unified Model for a case study characterized by the presence of convective activity. An ensemble of high-resolution forecasts valid up to three hours after the onset of convection is produced. We show that at 1.5 km resolution hydrostatic balance does not hold for forecast errors in regions of convection. This indicates that in the presence of convection hydrostatic balance should not be enforced in the covariance matrix used for variational data assimilation at this scale. The results show the need to investigate covariance models that may be better suited for convective-scale data assimilation. Finally, we give a measure of the balance present in the forecast perturbations as a function of the horizontal scale (from 3–90 km) using a set of diagnostics. Copyright © 2012 Royal Meteorological Society and British Crown Copyright, the Met Office
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Callus was initiated in three different ‘‘esculenta’’ taro cultivars by culturing corm slices in the dark on half-strength MS medium supplemented with 2.0 mg/l 2,4- dichlorophenoxyacetic acid (2,4-D) for 20 days followed by subculture of all corm slices to half-strength MS medium containing 1.0 mg/l thidiazuron (TDZ). Depending on the cultivar, 20–30% of corm slices produced compact, yellow, nodular callus on media containing TDZ. Histological studies revealed the presence of typical embryogenic cells which were small, isodiametric with dense cytoplasms. Somatic embryos formed when callus was transferred to hormone-free medium and *72% of the embryos germinated into plantlets on this medium. Simultaneous formation of roots and shoots during germination, and the presence of shoot and root poles revealed by histology, confirmed that these structures were true somatic embryos. Plants derived from somatic embryos appeared phenotypically normal following 2 months growth in a glasshouse. This method is a significant advance on those previously reported for the esculenta cultivars of taro due to its efficiency and reproducibility.
Resumo:
Taro (Colocasia esculenta L. Schott) is an important crop worldwide but is of particular significance in many Pacific Island countries where it forms part of the staple diet and serves as an export commodity. Escalating pest and disease problems are jeopardizing taro production with serious implications to food security and trade. Biotechnological approaches to addressing pest and disease problems, such as somatic embryogenesis and transgenesis, are potentially viable options. However, despite biotechnological advancements in higher profile agronomic crops, such progress in relation to Colocasia esculenta var. esculenta has been slow. This paper reviews taro biology, highlights the cultural and economic significance of taro in Pacific Island countries and discusses the progress made towards the molecular breeding of this important crop to date.
Resumo:
Embryogenic callus was initiated by culturing in vitro taro corm slices on agar-solidified half-strength MS medium containing 2.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) for 20 days followed by transfer to 1.0 mg/L thidiazuron (TDZ). Callus was subsequently proliferated on solid medium containing 1.0 mg/L TDZ, 0.5 mg/L 2,4- D and 800 mg/L glutamine before transfer to liquid medium containing the same components but with reduced glutamine (100 mg/L). After 3 months in liquid culture on an orbital shaker, cytoplasmically dense cell aggregates began to form. Somatic embryogenesis was induced by plating suspension cells onto solid media containing reduced levels of hormones (0.1 mg/L TDZ, 0.05 mg/L 2,4-D), high concentrations of sucrose (40–50 g/L) and biotin (1.0 mg/L). Embryo maturation and germination was then induced on media containing 0.05 mg/L benzyladenine (BA) and 0.1 mg/L indole-3-acetic acid (IAA). Histological studies of the developing embryos revealed the presence of typical shoot and root poles suggesting that these structures were true somatic embryos. The rate of somatic embryos formation was 500–3,000 per mL settledcell volume while approximately 60% of the embryos regenerated into plants.
Resumo:
Information fusion in biometrics has received considerable attention. The architecture proposed here is based on the sequential integration of multi-instance and multi-sample fusion schemes. This method is analytically shown to improve the performance and allow a controlled trade-off between false alarms and false rejects when the classifier decisions are statistically independent. Equations developed for detection error rates are experimentally evaluated by considering the proposed architecture for text dependent speaker verification using HMM based digit dependent speaker models. The tuning of parameters, n classifiers and m attempts/samples, is investigated and the resultant detection error trade-off performance is evaluated on individual digits. Results show that performance improvement can be achieved even for weaker classifiers (FRR-19.6%, FAR-16.7%). The architectures investigated apply to speaker verification from spoken digit strings such as credit card numbers in telephone or VOIP or internet based applications.
Resumo:
Human error, its causes and consequences, and the ways in which it can be prevented, remain of great interest to road safety practitioners. This paper presents the findings derived from an on-road study of driver errors in which 25 participants drove a pre-determined route using MUARC's On-Road Test Vehicle (ORTeV). In-vehicle observers recorded the different errors made, and a range of other data was collected, including driver verbal protocols, forward, cockpit and driver video, and vehicle data (speed, braking, steering wheel angle, lane tracking etc). Participants also completed a post trial cognitive task analysis interview. The drivers tested made a range of different errors, with speeding violations, both intentional and unintentional, being the most common. Further more detailed analysis of a sub-set of specific error types indicates that driver errors have various causes, including failures in the wider road 'system' such as poor roadway design, infrastructure failures and unclear road rules. In closing, a range of potential error prevention strategies, including intelligent speed adaptation and road infrastructure design, are discussed.
Resumo:
Object identification and tracking have become critical for automated on-site construction safety assessment. The primary objective of this paper is to present the development of a testbed to analyze the impact of object identification and tracking errors caused by data collection devices and algorithms used for safety assessment. The testbed models workspaces for earthmoving operations and simulates safety-related violations, including speed limit violations, access violations to dangerous areas, and close proximity violations between heavy machinery. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of device and algorithm errors were investigated for safety planning purposes.
Resumo:
Objective: Older driver research has mostly focused on identifying that small proportion of older drivers who are unsafe. Little is known about how normal cognitive changes in aging affect driving in the wider population of adults who drive regularly. We evaluated the association of cognitive function and age, with driving errors. Method: A sample of 266 drivers aged 70 to 88 years were assessed on abilities that decline in normal aging (visual attention, processing speed, inhibition, reaction time, task switching) and the UFOV® which is a validated screening instrument for older drivers. Participants completed an on-road driving test. Generalized linear models were used to estimate the associations of cognitive factor with specific driving errors and number of errors in self-directed and instructor navigated conditions. Results: All errors types increased with chronological age. Reaction time was not associated with driving errors in multivariate analyses. A cognitive factor measuring Speeded Selective Attention and Switching was uniquely associated with the most errors types. The UFOV predicted blindspot errors and errors on dual carriageways. After adjusting for age, education and gender the cognitive factors explained 7% of variance in the total number of errors in the instructor navigated condition and 4% of variance in the self-navigated condition. Conclusion: We conclude that among older drivers errors increase with age and are associated with speeded selective attention particularly when that requires attending to the stimuli in the periphery of the visual field, task switching, errors inhibiting responses and visual discrimination. These abilities should be the target of cognitive training.