124 resultados para VAPORIZATION
Resumo:
Abstract is not available.
Resumo:
A semitheoretical equation for latent heat of vaporization has been derived and tested. The average error in predicting the value at the normal boiling point in the case of about 90 compounds, which includes polar and nonpolar liquids, is about 1.8%. A relation between latent heat of vaporization and surface tension is also derived and is shown to lead to Watson's empirical relation which gives the change of latent heat of vaporization with temperature. This gives a physico-chemical justification for Watson's empirical relation and provides a rapid method of determining latent heats by measuring surface tension.
Resumo:
To understand the effect of molecular weight and branching on the heats of vaporization (AH,) and their flow behavior, AH, and viscosity (7) were measured at different temperatures in the high molecular weight ester series: linear flexible di-n-alkyl sebacates and compact branched triglycerides with molecular weight ranging from 300 to 900. AHv" values (AHv corrected to 298 K) have been obtained with experimental AH, and also computed according to the group additivity method; a smaller-CH,- group value of 3.8 kJ mol-' compared to the normal value of 5.0 kJ mol-' is found to give good agreement with the experimental data (within 2-5% error). Both ester series have the same AH," irrespective of their molecular features, namely,shape, flexibility, and polarity, suggesting the coiling of the molecules during vaporization. The segmental motion of these ester series during their flow and its dependence on their molecular features unlike AH,' are demonstrated by the correlation of the enthalpy of activation for viscous flow (AH*) and the ratio AE,/AH* = n (AE, is the energy of vaporization) with molecular weight.
Resumo:
The flow and vaporization behaviors of long-chain esters of varying molecular weights (300-900) ana branching (linear, Y-shaped, and +-shaped molecules) have been studied. The flow behavior is found to depend on the structure as well as the molecular weight. Below a molecular weight of 600, the molecules flow wholly but above this, segmental motion occurs, and the flow becomes independent of the molecular weight which is explained from the blob model. The blob concept demonstrates that the hole of a size of about 11 angstrom is needed for the flow to occur and it is much less than the size of the molecule. The blob size is observed to slightly decrease along the series linear and Y- and +-branched esters. The heat of vaporization is found to be independent of the molecular structure since the molecules acquire a coiled spherical shape during vaporization and hence depends only on the molecular weight. A significant structural effect is observed for the esters on their glass transition temperature (T(g)). The T(g) vs molecular weight plot displays contrasting trend for linear and +-branched esters, with Y esters showing an intermediate behavior. It is explained from their molecular packing and entanglement as visualized by the blob model.
Resumo:
In lean premixed pre-vaporized (LPP) combustion, controlled atomization, dispersion and vaporization of different types of liquid fuel in the premixer are the key factors required to stabilize the combustion process and improve the efficiency. The dispersion and vaporization process for biofuels and conventional fuels sprayed into a crossflow pre-mixer have been simulated and analyzed with respect to vaporization rate, degree of mixedness and homogeneity. Two major biofuels under investigation are Ethanol and Rapeseed Methyl Esters (RME), while conventional fuels are gasoline and jet-A. First, the numerical code is validated by comparing with the experimental data of single n-heptane and decane droplet evaporating under both moderate and high temperature convective air now. Next, the spray simulations were conducted with monodispersed droplets with an initial diameter of 80 mu m injected into a turbulent crossflow of air with a typical velocity of 10 m/s and temperature of around 800K. Vaporization time scales of different fuels are found to be very different. The droplet diameter reduction and surface temperature rise were found to be strongly dependent on the fuel properties. Gasoline droplet exhibited a much faster vaporization due a combination of higher vapor pressure and smaller latent heat of vaporization compared to other fuels. Mono-dispersed spray was adopted with the expectation of achieving more homogeneous fuel droplet size than poly-dispersed spray. However, the diameter histogram in the zone near the pre-mixer exit shows a large range of droplet diameter distributions for all the fuels. In order to improve the vaporization performance, fuels were pre-heated before injection. Results show that the Sauter mean diameter of ethanol improved from 52.8% of the initial injection size to 48.2%, while jet-A improved from 48.4% to 18.6% and RME improved from 63.5% to 31.3%. The diameter histogram showed improved vaporization performance of jet-A. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Droplet collision occurs frequently in regions where the droplet number density is high. Even for Lean Premixed and Pre-vaporized (LPP) liquid sprays, the collision effects can be very high on the droplet size distributions, which will in turn affect the droplet vaporization process. Hence, in conjunction with vaporization modeling, collision modeling for such spray systems is also essential. The standard O'Rourke's collision model, usually implemented in CFD codes, tends to generate unphysical numerical artifact when simulations are performed on Cartesian grid and the results are not grid independent. Thus, a new collision modeling approach based on no-time-counter method (NTC) proposed by Schmidt and Rutland is implemented to replace O'Rourke's collision algorithm to solve a spray injection problem in a cylindrical coflow premixer. The so called ``four-leaf clover'' numerical artifacts are eliminated by the new collision algorithm and results from a diesel spray show very good grid independence. Next, the dispersion and vaporization processes for liquid fuel sprays are simulated in a coflow premixer. Two liquid fuels under investigation are jet-A and Rapeseed Methyl Esters (RME). Results show very good grid independence in terms of SMD distribution, droplet number distribution and fuel vapor mass flow rate. A baseline test is first established with a spray cone angle of 90 degrees and injection velocity of 3 m/s and jet-A achieves much better vaporization performance than RME due to its higher vapor pressure. To improve the vaporization performance for both fuels, a series of simulations have been done at several different combinations of spray cone angle and injection velocity. At relatively low spray cone angle and injection velocity, the collision effect on the average droplet size and the vaporization performance are very high due to relatively high coalescence rate induced by droplet collisions. Thus, at higher spray cone angle and injection velocity, the results expectedly show improvement in fuel vaporization performance since smaller droplet has a higher vaporization rate. The vaporization performance and the level of homogeneity of fuel-air mixture can be significantly improved when the dispersion level is high, which can be achieved by increasing the spray cone angle and injection velocity. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The vaporization characteristics of pendant droplets of various chemical compositions (like conventional fuels, alternative fuels and nanosuspensions) subjected to convective heating in a laminar air jet have been analyzed. Different heating conditions were achieved by controlling the air temperature and velocity fields around the droplet. A hybrid timescale has been proposed which incorporates the effects of latent heat of vaporization, saturation vapor pressure and thermal diffusivity. This timescale in essence encapsulates the different parameters that influence the droplet vaporization rate. The analysis further permits the evaluation of the effect of various parameters such as surrounding temperature, Reynolds number, far-field vapor presence, impurity content and agglomeration dynamics (nanosuspensions) in the droplet. Flow visualization has been carried out to understand the role of internal recirculation on the vaporization rate. The visualization indicates the presence of a single vortex cell within the droplet on account of the rotation and oscillation of the droplet due to aerodynamic load. External heating induced agglomeration in nanofluids leads to morphological changes during the vaporization process. These morphological changes and alteration in vaporization behavior have been assessed using high speed imaging of the diameter regression and Scanning Electron Microscopy images of the resultant precipitate. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Pre-vaporization and pre-mixing are the two main features of LPP type of combustor that operate on liquid fuels. The pre-vaporization length scale is one of its most important design parameters. In this study, the goal is to put forward a simulation based correlation for fuel vaporization performance as a function of dimensionless parameters for crossflow type of injections. Two types of fuels are studied here: jet-A and one of its potential biofuel substitutes, RME. Different sets of spray simulations are considered for crossflow type of injections. Correlations are provided for both jet-A and RME's vaporization performance as a function of non-dimensional inlet air temperature, fuel/air momentum flux ratio and normalized spray traverse distance. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The vaporization of condensed materials in contact with high-current discharge plasmas is considered. A kinetic numerical method named direct simulation Monte Carlo (DSMC) and analytical kinetic approaches based on the bimodal distribution function approximation are employed. The solution of the kinetic layer problem depends upon the velocity at the outer boundary of the kinetic layer which varies from very small, corresponding to the high-density plasma near the evaporated surface, up to the sound speed, corresponding to evaporation into vacuum. The heavy particles density and temperature at the kinetic and hydrodynamic layer interface were obtained by the analytical method while DSMC calculation makes it possible to obtain the evolution of the particle distribution function within the kinetic layer and the layer thickness.
Resumo:
Part I
The latent heat of vaporization of n-decane is measured calorimetrically at temperatures between 160° and 340°F. The internal energy change upon vaporization, and the specific volume of the vapor at its dew point are calculated from these data and are included in this work. The measurements are in excellent agreement with available data at 77° and also at 345°F, and are presented in graphical and tabular form.
Part II
Simultaneous material and energy transport from a one-inch adiabatic porous cylinder is studied as a function of free stream Reynolds Number and turbulence level. Experimental data is presented for Reynolds Numbers between 1600 and 15,000 based on the cylinder diameter, and for apparent turbulence levels between 1.3 and 25.0 per cent. n-heptane and n-octane are the evaporating fluids used in this investigation.
Gross Sherwood Numbers are calculated from the data and are in substantial agreement with existing correlations of the results of other workers. The Sherwood Numbers, characterizing mass transfer rates, increase approximately as the 0.55 power of the Reynolds Number. At a free stream Reynolds Number of 3700 the Sherwood Number showed a 40% increase as the apparent turbulence level of the free stream was raised from 1.3 to 25 per cent.
Within the uncertainties involved in the diffusion coefficients used for n-heptane and n-octane, the Sherwood Numbers are comparable for both materials. A dimensionless Frössling Number is computed which characterizes either heat or mass transfer rates for cylinders on a comparable basis. The calculated Frössling Numbers based on mass transfer measurements are in substantial agreement with Frössling Numbers calculated from the data of other workers in heat transfer.
Resumo:
Therapeutic approaches to chronic actinic cheilitis focus on the removal or destruction of diseased epithelium. The CO(2) laser has become an important therapeutic alternative, achieving clinical resolution in around 90% of patients. Although many laser physical parameters have been reported, some are known for their low potential for scar induction without compromising the success of the results. The aim of this clinicohistological study was to compare the therapeutic responses to two low-morbidity protocols involving a single laser pass. A total of 40 patients with chronic multicentric and microscopically proven disease were randomly submitted to two conservative CO(2) laser protocols using a bilateral comparative model. The degree of histological atypia of the epithelium was determined in 26 patients both pre- and postoperatively for both protocols. Other histological phenomena were assessed in addition to this central analysis parameter. Clinical recurrence occurred in 12.5% of patients for each protocol, together with a significant reduction in the degree of epithelial atypia (p < 0.001), which was occasionally complete. However, no difference was found between the protocols (p > 0.05). Using these morphological parameters it was not possible to determine whether postoperative epithelial atypias in part of the sample were reactive or residual in nature. A few patients may show minor postoperative lesions. Due to their potential to achieve clinical and importantly microscopic resolution, the studied protocols may be used for mild through moderate dysplastic epithelium and clinically diffuse disease.