997 resultados para VAPOR TREATMENT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin poly(3-butylthiophene) (P3BT) film composed of aligned lamellae attached to the edge of the original film has been achieved via a controlled solvent vapor treatment (C-SVT) method. The polarized optical microscopy operated at both single-polarization and cross-polarization modes has been used to investigate the alignment of the fiber-like lamellae. A numerical simulation method is used to quantitatively calculate angle distributions of the lamellae deviated from the film growth direction. Prepatterned P3BT film edge acts as nuclei which densely initialize subsequent crystal growth by exhausting the materials transported from the partially dissolved film. The growth of new film upon crystallization is actually a self-healing process where the two-dimensional geometric confinement is mainly responsible for this parallel alignment of P3BT crystals. The solvent vapor pressure should be carefully chosen so as to induce crystal growth but avoid liquid instability which will destroy the continuity of the film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors report enhanced poly(3-hexylthiophene) (P3HT):methanofullerene (PCBM) bulk-heterojunction photovoltaic cells via 1,2-dichlorobenzene (DCB) vapor treatment and thermal annealing. DCB vapor treatment can induce P3HT self-organizing into ordered structure leading to enhanced absorption and high hole mobility. Further annealing the device at a high temperature, PCBM molecules begin to diffuse into aggregates and together with the ordered P3HT phase form bicontinuous pathways in the entire layer for efficient charge separation and transport. Compared to the control device that is merely annealed, optical absorption, short-circuit current, and power conversion efficiency are increased for the DCB vapor-treated cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rigid backbone of the poly(3-butylthiophene) molecule adopts a perpendicular orientation with respect to the substrate by using a solvent-vapor treatment (see figure). Small and closely contacting spherulites instead of conventional whisker-like crystals are achieved. This could be utilized to improve charge-carrier mobility particularly in the direction normal to the film plane by designing and constructing thick crystalline domains in the functional layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dewetting evolution process of polymethyl methacrylate (PMMA) film on the flat and prepatterned polydimethylsiloxane (PDMS) substrates (with square microwells) by the saturated solvent of methyl ethyl ketone (MEK) treatment has been investigated at room temperature by the optical microscope (OM) and atomic force microscope (AFM). The final dewetting on the flat PDMS substrate led to polygonal liquid droplets, similar to that by temperature annealing. However, on the patterned PDMS substrate, depending on the microwells' structure of PDMS substrate and defect positions that initiated the rupture and dewetting of PMMA, two different kinds of dewetting phenomena, one initiated around the edge of the microwells and another initiated outside the microwells, were observed. The forming mechanism of these two different dewetting phenomena has been discussed. The microwells were filled with liquid droplets of PMMA after dewetting due to the formation of fingers caused by the pinning of the three-phase-line at the edge of the microwells and their rupture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembly processes of the rod-coil diblock oligomer thin film of tetra-aniline (TANI)-block-poly(L-lactide) (PLLA) with different film thicknesses induced in the coil-selective solvent of acetone vapor at room temperature were studied. The morphologies of the oligomer films were determined by the film thickness. For the thicker film (232 nm), the nonextinct concentric ring-banded textures could form. While for the thinner and appropriate film (about 6 nm), multistacked diamond-shaped appearances with the periodic thickness being about 8.5 nm(6-nm-thick extended PLLA chain and 2.5-nm-thick p-pi conjugating TANI bimolecular layer) formed. The possible formation models of those two regular morphologies were presented in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have followed the time development of the microdomain structure in symmetric diblock copolymer poly(styrene-b-methyl methacrylate), P(S-b-MMA), ultrathin films via PMMA-selective solvent vapor treatment by atomic force microscopy (AFM). After preparation on a substrate preferentially attracting the PMMA block, PS forms a continuous layer at a film's free surface. With subsequent solvent vapor treatment, the film gradually shows a well-ordered hexagonally packed nanocylinders structure. It is shown that only when the film thickness is less than the 1/2L(0) (lamellar repeat spacing), and exposed to PMMA block selective solvent for an appropriate time, can the well-ordered hexagonally packed nanocylinders form. On an extended solvent vapor treatment, a mixed morphology containing nanocylinders and stripes appears, followed by the striped morphologies. When the annealing time is long enough, the film comes back to the flat surface again, however, with PMMA instead of PS dominating the free surface.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanoscale-phase separation of electron donor/acceptor blends is crucial for efficient charge generation and collection in Polymer bulk heterojunction photovoltaic cells. We investigated solvent vapor annealing effect of poly(3-hexylthiophene) (P3HT)/methanofullerene (PCBM) blend oil its morphology and optoelectronic properties. The organic solvents of choice for the treatment have a major effect oil the morphology of P3HT/PCBM blend and the device performance. Ultraviolet-visible absorption spectro,;copy shows that specific solvent vapor annealing can induce P3HT self-assembling to form well-ordered structure; and hence, file absorption in the red region and the hole transport are enhanced. The solvent that has a poor Solubility to PCBM Would cause large PCBM Clusters and result in a rough blend film. By combining an appropriate solvent vapor treatment and post-thermal annealing of the devices, the power conversion efficiency is enhanced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of ring-shaped structures in an H-shaped block copolymer [a poly(ethylene glycol) backbone with polystyrene branches, i.e., (PS)(2)PEG(PS)(2)] thin film was investigated when it was annealed in saturated PEG-selective acetonitrile vapor. Our results clearly indicate that ring formation is determined by the initial morphology of the spin-coated film, the solvent vapor selectivity and the environmental temperature of the solvent-annealing process. Only the films with the initial core-shell cylindrical structure in strongly PEG-selective acetonitrile vapor could form the ring-shaped structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes the design and assembly of multifunctional and cost-efficient composite fiber nonwovens as semi-occlusive wound dressings using a simple electrospinning process to incorporate a variety Of functional components into an Ultrathin fiber. These components include non-hydrophilic poly(L-lactide) (PLLA) as fibrous backbone, hydrophilic poly(vinyl pyrrolidone)iodine (PVP-I), TiO2 nanoparticles, zinc chloride as antimicrobial, odor-controlling, and antiphlogistic agents, respectively. The process of synthesis starts with a multicomponent solution Of PLLA, PVP, TiO2 nanoparticles plus zinc chloride, in which TiO2 nanoparticles are synthesized by in situ hydrolysis of TiO2 precursors in a PVP Solution for the sake of obtaining the particle-uniformly dispersive solution. Subsequent electrospinning generates the corresponding composite fibers. A further iodine vapor treatment to the composite fibers combines iodine with PVP to produce the PVP-I complexes. Experiments indicate that the assembled composite fibers (300-400 nm) possess the ointment-releasing characteristic and the phase-separate, core-sheath structures in which PVP-I residing in fiber Surface layer becomes the sheath, and PLLA distributing inside the fiber acts as the core.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have systematically studied the thin film morphologies of asymmetric polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer subjected to solvent vapors of varying selectivity for the constituent blocks. Upon a short treatment in neutral or PS-selective vapor, the film exhibited a highly ordered array of hexagonally packed, cylindrical microdomains. In the case of PEO selective vapor annealing, such ordered cylindrical microdomains were not obtained. instead, fractal patterns on the microscale were observed and their growth processes investigated. Furthermore, hierarchical structures could be obtained if the fractal pattern was exposed to neutral or PS selective vapor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have studied the surface morphology of symmetric poly(styrene)-block-poly(methyl methacrylate) diblock copolymer thin films after solvent vapor treatment selective for poly(methyl methacrylate). Highly ordered nanoscale depressions or striped morphologies are obtained by varying the solvent annealing time. The resulting nanostructured films turn out to be sensitive to the surrounding medium, that is, their morphologies and surface properties can be reversibly switchable upon exposure to different block-selective solvents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the morphology and phase behaviors of blend thin films containing two poly styrene-b-poly (methyl methacrylate) (PS-b-PMMA) diblock copolymers with different blending compositions induced by a selective solvent for the PMMA block, which were studied by transmission electron microscopy (TEM). The neat asymmetric PS-b-PMMA diblock copolymers employed in this study, respectively coded as a(1) and a(2), have similar molecular weights but different volume fractions of PS block (f(PS) = 0.273 and 0.722). Another symmetric PS-b-PMMA diblock copolymer, coded as s, which has a PS block length similar to that of a(1), was also used. For the asymmetric a(1)/a(2) blend thin films, circular multilayered structures were formed. For the asymmetric a(1)/symmetric s blend thin films, inverted phases with PMMA as the dispersed domains were observed, when the weight fraction of s was less than 50%. The origins of the morphology formation in the blend thin films via solvent treatment are discussed. Combined with the theoretical prediction by Birshtein et al. (Polymer 1992, 33, 2750), we interpret the formation of these special microstructures as due to the packing frustration induced by the difference in block lengths and the preferential interactions between the solvent and PMMA block.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have followed the morphological evolution and crystallization process of spherical micelles formed by the mixture of polystyrene-b-poly(acrylic acid) (PS-b-PAA) and polystyrene-b-poly(2-vinylpyridine)b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) (the core of the spherical micelles was made of P2VP and PAA blocks through hydrogen bonding in neutral solvent N,N-dimethylformamide, DMF) via DMF vapor treatment. Different phenomena, such as rupture of the film, formation of cylinder aggregates and regular square lamellae, were observed when the micelle film was treated in DMF for different times. At the early stage of annealing in DMF vapor, the micelle film became unstable and ruptured. Cylinder aggregates, within which the PEO blocks achieved the association and primary chain folding, formed as the mesophases before the nucleation of the PEO single crystals at this stage. Further treatment in DMF vapor resulted in the nucleation of the PEO blocks at the corners of quasi-square lamellae. Then a quite regular "sandwich" lamellar structure, constructed by a PEO single-crystal layer covered by two tethered layers of other amorphous blocks on the top and bottom crystal basal surfaces, formed when the film of micelles was annealed in DMF vapor for sufficient times.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have systematically studied the thin film morphologies of symmetric poly(styrene)-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer after annealing to solvents with varying selectivity. Upon neutral solvent vapor annealing, terraced morphology is observed without any lateral structures on the surfaces. When using PS-selective solvent annealing, the film exhibits macroscopically flat with a disordered micellar structure. While PMMA-selective solvent annealing leads to the dewetting of the film with fractal-like holes, with highly ordered nanoscale depressions in the region of undewetted films. In addition, when decreasing the swelling degree of the film in the case of PMMA-selective solvent annealing, hills and valleys are observed with the coexistence of highly ordered nanoscale spheres and stripes on the surface, in contrast to the case of higher swelling degree. The differences are explained qualitatively on the basis of polymer-solvent interaction parameters of the different components.