980 resultados para VANADIUM PENTOXIDE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic susceptibilities of certain vanadium pentoxide systems supported by kieselgur have been determined in the temperature interval 30° to 400° C. The plot of reciprocal susceptibility against temperature for all the systems studied indicates sudden deflections at temperatures which are about 150° lower than those of optimum catalytic activity. It has been suggested that these points may mark the temperatures of commencement of structural changes which may be responsible for the activity of these catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalytic amount of vanadium reagent with tert-butylhydroperoxide as the oxidant was found to be an excellent oxidizing agent in aqueous medium. Vanadium pentoxide with aq tert-butylhydroperoxide readily oxidizes primary benzylic azides to the corresponding acids and secondary benzylic azides to the corresponding ketones in excellent yields. Further, vanadium pentoxide and aq tert-butylhydroperoxide combination turned out to be an effective catalyst for the oxidation of alcohols. Using vanadium pentoxide and aq tert-butylhydroperoxide primary alcohols were oxidized to the corresponding acids, whereas secondary alcohols underwent a smooth transformation to furnish corresponding ketones in excellent yields. All the oxidations are performed in water. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report a synthesis, characterization and electrochemical properties of V2O5 nanobelts. V2O5 nanobelts have been prepared via hydrothermal treatment of commercial V2O5 in acidic (HCl/H2SO4) medium at relatively low temperature (160 degrees C). The hydrothermally derived products have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photo electron spectroscopy (XPS), UV-Vis spectroscopy, Scanning/Transmission electron microscopy (SEM/TEM). XRD pattern of V2O5 nanobelts show an orthorhombic phase. From the FTIR spectrum, the peak observed at 1018 cm-1 is characteristic of the stretching vibration mode of the terminal vanadyl, V = O. The UV-Vis absorption spectrum of V2O5 nanobelts show maximum absorbance at 430 nm, which was blue-shifted compared to that of bulk V2O5. TEM micrographs reveal that the products consist of nanobelts of 40-200 nm in thickness and several tens of micrometers in length. The electrochemical analysis shows an initial discharge capacity of 360 mAh g-1 and its almost stabilized capacity is reached to 250 mAh g-1 after 55 cycles. A probable reaction mechanism for the formation of orthorhombic V2O5 nanobelts is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic study was made of the synthesis of V(2)O(5)center dot nH(2)O nanostructures, whose morphologies, crystal structure, and amount of water molecules between the layered structures were regulated by strictly controlling the hydrothermal treatment variables. The synthesis involved a direct hydrothermal reaction between V(2)O(5) and H(2)O(2), without the addition of organic surfactant or inorganic ions. The experimental results indicate that high purity nanostructures can be obtained using this simple and clean synthetic route. Oil the basis of a study of hydrothermal treatment variables such as reaction temperature and time, X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) revealed that it was possible to obtain nanoribbons of the V(2)O(5)center dot nH(2)O monoclinic phase and nanowires or nanorods of the V(2)O(5)center dot nH(2)O orthorhombic phase. Thermal gravimetric analysis (TGA) shows also that the water content in the Structure call be controlled at appropriate hydrothermal conditions. Concerning the oxidation state of the vanadium atoms of as-obtained samples, a mixed-valence state composed of V(4+) and V(5+) was observed ill the V(2)O(5)center dot nH(2)O monoclinic phase, while the valence of the vanadium atoms was preferentially 5+ in the V(2)O(5)center dot nH(2)O orthorhombic phase. The X-ray absorption near-edge structure (XANES) results also indicated that the local structure of vanadium possessed a higher degree of symmetry in the V(2)O(5)center dot nH(2)O monoclinic phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we report results from continuous-wave (CW) and pulsed electron paramagnetic resonance (EPR) and proton nuclear magnetic resonance (NMR) studies of the vanadium pentoxide xerogel V2O5:nH(2)O (n approximate to 1.6). The low temperature CW-EPR spectrum shows hyperfine structure due to coupling of unpaired V4+ electron with the vanadium nucleus. The analysis of the spin Hamiltonian parameters suggests that the V4+ ions are located in tetragonally distorted octahedral sites. The transition temperature from the rigid-lattice low-temperature regime to the high temperature liquid-like regime was determined from the analysis of the temperature dependence of the hyperfine splitting and the V4+ motional correlation time. The Electron Spin Echo Envelope Modulation (ESEEM) data shows the signals resulting from the interaction of H-1 nuclei with V4+ ions. The modulation effect was observed only for field values in the center of the EPR absorption spectrum corresponding to the single crystals orientated perpendicular to the magnetic field direction. At least three protons are identified in the xerogel by our magnetic resonance experiments: (I) the OH groups in the equatorial plane, (ii) the bound water molecules in the axial V=O bond and (iii) the free mobile water molecules between the oxide layers. Proton NMR lineshapes and spin-lattice relaxation times were measured in the temperature range between 150 K and 323 K. Our analysis indicates that only a fraction of the xerogel protons contribute to the measured conductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of one-dimensional (1D) V2O5 center dot nH(2)O nanostructures as pH sensing material was evaluated. 1D V2O5 center dot nH(2)O nanostructures were obtained by a hydrothermal method with systematic control of morphology forming different nanostructures: nanoribbons, nanowires and nanorods. Deposited onto Au-covered substrates, 1D V2O5 center dot nH(2)O nanostructures were employed as gate material in pH sensors based on separative extended gate FET as an alternative to provide FET isolation from the chemical environment. 1D V2O5 center dot nH(2)O nanostructures showed pH sensitivity around the expected theoretical value. Due to high pH sensing properties, flexibility and low cost, further applications of 1D V2O5 center dot nH(2)O nanostructures comprise enzyme FET-based biosensors using immobilized enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the comparative structural-vibrational study of nanostructures of nanourchins, nanotubes, and nanorods of vanadium oxide. The tube walls comprise layers of vanadium oxide with the organic surfactant intercalated between atomic layers. Both Raman scattering and infrared spectroscopies showed that the structure of nanourchins, nanotubes, and nanorods of vanadium oxide nanocomposite are strongly dependent on the valency of the vanadium, its associated interactions with the organic surfactant template, and on the packing mechanism and arrangement of the surfactant between vanadate layers. Accurate assignment of the vibrational modes to the V-O coordinations has allowed their comparative classification and relation to atomic layer structure. Although all structures are formed from the same precursor, differences in vanadate conformations due to the hydrothermal treatment and surfactant type result in variable degrees of crystalline order in the final nanostructure. The nanotube-containing nanourchins contain vanadate layers in the nanotubes that are in a distorted γ- V5+ conformation, whereas the the nanorods, by comparison, show evidence for V5+ and V4+ species-containing ordered VOx lamina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Template-directed synthesis is a promising route to realize vanadate-based 1-D nanostructures, an example of which is the formation of vanadium pentoxide nanotubes and associated nanostructures. In this work, we report the interchange of long-chained alkyl amines with alkyl thiols. This reaction was followed using gold nanoparticles prepared by the Chemical Liquid Deposition (CLD) method with an average diameter of ∼0.9 nm and a stability of ∼85 days. V2 O5 nanotubes (VOx-NTs) with lengths of ∼2 μm and internal hollow diameters of 20-100 nm were synthesized and functionalized in a Au-acetone colloid with a nominal concentration of ∼ 4 × 1 0- 3 mol dm-3. The interchange reaction with dodecylamine is found only to occur in polar solvents and incorporation of the gold nanoparticles is not observed in the presence of n-decane.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plasma-assisted reactive rf magnetron sputtering deposition is used to fabricate vanadium oxide films on glass, silica and silicon substrates. The process conditions are optimized to synthesize phase-pure vanadium pentoxide (V2O5) featuring a nanocrystalline structure with the predominant (0 0 1) crystallographic orientation, surface morphology with rod-like nanosized grains and very uniform (the non-uniformity does not exceed 4%) coating thickness over large surface areas. The V2O5 films also show excellent and temperature-independent optical transmittance in a broad temperature range (20-95 °C). The results are relevant to the development of smart functional coatings with temperature-tunable properties. © 2007 IOP Publishing Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vapour phase oxidation of furfural over vanadium pentoxide catalyst was studied using an isothermal flow reactor in the temperature range of 220–280°C. Maleic anhydride and carbon dioxide are found to be formed from furfural by a parallel reaction scheme. The following rate equation based on the two-stage redox mechanism—the substance to be oxidized reduces the catalyst which in turn is reoxidized by oxygen from the feed—is found to explain the data satisfactorily.The reoxidation of the reduced catalyst was found to be the rate controlling step.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vapour phase oxidation of furfural over vanadium pentoxide catalyst was studied using an isothermal flow reactor in the temperature range of 220–280°C. Maleic anhydride and carbon dioxide are found to be formed from furfural by a parallel reaction scheme. The following rate equation based on the two-stage redox mechanism—the substance to be oxidized reduces the catalyst which in turn is reoxidized by oxygen from the feed—is found to explain the data satisfactorily. The reoxidation of the reduced catalyst was found to be the rate controlling step.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three-dimensional vanadium pentoxide (V2O5) material architectures in the form of inverse opals (IOs) were fabricated using a simple electrodeposition process into artificial opal templates on stainless steel foil using an aqueous solution of VOSO4.χH2O with added ethanol. The direct deposition of V2O5 IOs was compared with V2O5 planar electrodeposition and confirms a similar progressive nucleation and growth mechanism. An in-depth examination of the chemical and morphological nature of the IO material was performed using X-ray crystallography, X-ray photoelectron spectroscopy, Raman scattering and scanning/transmission electron microscopy. Electrodeposition is demonstrated to be a function of the interstitial void fraction of the artificial opal and ionic diffusivity that leads to high quality, phase pure V2O5 inverse opals is not adversely affected by diffusion pathway tortuosity. Methods to alleviate electrodeposited overlayer formation on the artificial opal templates for the fabrication of the porous 3D structures are also demonstrated. Such a 3D material is ideally suited as a cathode for lithium ion batteries, electrochromic devices, sensors and for applications requiring high surface area electrochemically active metal oxides.