939 resultados para VACUUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Void of any inherent structure in classical physics, the vacuum has revealed to be incredibly crowded with all sorts of processes in relativistic quantum physics. Yet, its direct effects are usually so subtle that its structure remains almost as evasive as in classical physics. Here, in contrast, we report on the discovery of a novel effect according to which the vacuum is compelled to play an unexpected central role in an astrophysical context. We show that the formation of relativistic stars may lead the vacuum energy density of a quantum field to an exponential growth. The vacuum-driven evolution which would then follow may lead to unexpected implications for astrophysics, while the observation of stable neutron-star configurations may teach us much on the field content of our Universe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, subdominant contributions. This view seemed to be endorsed by the seminal results obtained over the last decades in the context of renormalization of quantum fields in curved spacetimes. Here, however, we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background spacetime, to become dominant over any classical energy-density component. By estimating the time scale for the vacuum energy density to become dominant, and therefore for back-reaction on the background spacetime to become important, we argue that this (infrared) vacuum dominance may bear unexpected astrophysical and cosmological implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to isolate psychrotrophic clostridia from Brazilian vacuum-packed beef cuts (spoiled or not) and to identify the isolates by using 16S rRNA gene sequencing. Anaerobic psychrotrophic microorganisms were also enumerated and samples were collected to verify the incidence of psychrotrophic clostridia in the abattoir environment. Vacuum-packed beef cuts (n = 8 grossly distended and n = 5 non-spoiled) and environmental samples were obtained from a beef packing plant located in the state of Sao Paulo, Brazil. Each sample was divided in three subsamples (exudate, beef surface and beef core) that were analyzed for vegetative forms, total spore-forming, and sulfide reducing spore-forming, both activated by alcohol and heat. Biochemical profiles of the isolates were obtained using API20A, with further identification using 16S rRNA gene sequencing. The growth temperature and the pH range were also assessed. Populations of psychrotrophic anaerobic vegetative microorganisms of up to 10(10) CFU/(g, mL or 100 cm(2)) were found in `blown pack` samples, while in non-spoiled samples populations of 10(5) CFU/(g, CFU/mL or CFU/100cm(2)) was found. Overall, a higher population of total spores and sulfide reducing spores activated by heat in spoiled samples was found. Clostridium gasigenes (n = 10) and C. algidicarnis (n = 2) were identified using 16S rRNA gene sequencing. Among the ten C. gasigenes isolates, six were from spoiled samples (C1, C2 and C9), two were isolated from non-spoiled samples (C4 and C5) and two were isolated from the hide and the abattoir corridor/beef cut conveyor belt. C. algidicarnis was recovered from spoiled beef packs (C2). Although some samples (C3, C7, C10 and C14) presented signs of `blown pack` spoilage, Clostridium was not recovered. C. algidicarnis (n = 1) and C. gasigenes (n = 9) isolates have shown a psychrotrophic behavior, grew in the range 6.2-8.2. This is the first report on the isolation of psychrotrophic Clostridium (C. gasigenes and C. algidicarnis) in Brazil. This study shows that psychrotrophic Clostridium may pose a risk for the stability of vacuum-packed beef produced in tropical countries during shelf-life and highlights the need of adopting control measures to reduce their incidence in abattoir and the occurrence of `blown pack` spoilage. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between the oscillations of piezoceramic transducer and the mechanism of as excitation-the generator of the electric current of limited power-supply-are analyzed in this paper In practical situations, the dynamics of the forcing function on a vibrating system cannot be considered as given a priori, and it must be taken as a consequence of the dynamics of the whole system. In other words, the forcing source has limited power as that provided by a dc motor for an example, and thus its own dynamics is influenced by that of the vibrating system being forced. This increases the number of degrees of freedom of the problem, and it is called a nonideal problem. In this work, we present certain phenomena as Sommerfeld effect, jump, saturation, and stability, through the influences of the parameters of the governing equations motion. [DOI: 10.1115/1.3007909]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the index of refraction of a two-level atom replacing the usually applied coherent driving fields by a squeezed vacuum field. This system can produce a large index of refraction accompanied by vanishing absorption when the carrier frequency of the squeezed vacuum is detuned from the atomic resonance. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stationary lineshape of a two-level atom driven by low-intensity narrow-bandwidth squeezed light is shown to exhibit significant differences in behaviour compared to the lineshape for broadband squeezed light. We find that for narrow-bandwidth squeezed light the lineshape is composed of two Lorentzians whose amplitudes depend on the squeezing correlations. Moreover, one of the Lorentzians has a negative weight which leads to narrowing of the line. These features are absent in the broadband case, where the stationary lineshape is the same as for a thermal field. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a two-level atom interacting with an extremely weak squeezed vacuum can display resonance fluorescence spectra that are qualitatively different to those that can be obtained using fields with a classical analogue. We consider first the free space situation with monochromatic excitation, and then discuss a bichromatically driven two-level atom in a cavity as a practical scenario for experimentally detecting the anomalous features predicted. We show that in the bad cavity limit, the anomalous spectral features appear for a weak squeezed vacuum and large frequency differences of the bichromatic field, conditions which are easily accessible in laboratories. The advantage of bichromatic, as opposed to monochromatic, excitation is that there is no coherent scattering at line centre which could obscure the observations. A scaling law is derived, N similar to Omega(4) which relates the squeezed photon number to the Rabi frequency at which the anomalous features appear. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mellow and Autler-Townes probe absorption spectra of a three-level atom in a cascade configuration with the lower transition coherently driven and also coupled to a narrow bandwidth squeezed-vacuum field are studied. Analytical studies of the modifications caused by the finite squeezed-vacuum bandwidth to the spectra are made for the case when the Rabi frequency of the driving field is much larger than the natural linewidth. The squeezed vacuum center frequency and the driving laser frequency are assumed equal. We show that the spectral features depend on the bandwidth of a squeezed vacuum field and whether the sources of the squeezing field are degenerate (DPA) or nondegenerate (NDPA) parametric amplifiers. In a broadband or narrow bandwidth squeezed vacuum generated by a NDPA, the central component of the Mellow spectrum can be significantly narrower than that in the normal vacuum. When the source of the squeezed vacuum is a DPA, the central feature is insensitive to squeezing. The Rabi sidebands, however, can be significantly narrowed only in the squeezed vacuum produced by the DPA. The two lines of the Autler-Townes absorption spectrum can be narrowed only in a narrow bandwidth squeezed vacuum, whereas they are independent of the phase and are always broadened in a broadband squeezed vacuum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the resonance fluorescence from two interacting atoms driven by a squeezed vacuum field and show that this system produces an interference pattern with a dark center. We discuss the role of the interatomic interactions in this process and find that the interference pattern results from an unequal population of the symmetric and antisymmetric states of the two-atom system. We also identify intrinsically nonclassical effects versus classical squeezed field effects, (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resonance fluorescence of a two-level atom driven by a coherent laser field and damped by a finite bandwidth squeezed vacuum is analysed. We extend the Yeoman and Barnett technique to a non-zero detuning of the driving field from the atomic resonance and discuss the role of squeezing bandwidth and the detuning in the level shifts, widths and intensities of the spectral lines. The approach is valid for arbitrary values of the Rabi frequency and detuning but for the squeezing bandwidths larger than the natural linewidth in order to satisfy the Markoff approximation. The narrowing of the spectral lines is interpreted in terms of the quadrature-noise spectrum. We find that, depending on the Rabi frequency, detuning and the squeezing phase, different factors contribute to the line narrowing. For a strong resonant driving field there is no squeezing in the emitted field and the fluorescence spectrum exactly reveals the noise spectrum. In this case the narrowing of the spectral lines arises from the noise reduction in the input squeezed vacuum. For a weak or detuned driving field the fluorescence exhibits a large squeezing and, as a consequence, the spectral lines have narrowed linewidths. Moreover, the fluorescence spectrum can be asymmetric about the central frequency despite the symmetrical distribution of the noise. The asymmetry arises from the absorption of photons by the squeezed vacuum which reduces the spontaneous emission. For an appropriate choice of the detuning some of the spectral lines can vanish despite that there is no population trapping. Again this process can be interpreted as arising from the absorption of photons by the squeezed vacuum. When the absorption is large it may compensate the spontaneous emission resulting in the vanishing of the fluorescence lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present numerical and analytical results for the Mollow probe absorption spectrum of a coherently driven two-level system in a narrow bandwidth squeezed vacuum field. The spectra are calculated for the case where the Rabi frequency of the driving field is much larger than the natural linewidth and the squeezed vacuum carrier frequency is detuned from the driving laser frequency. The driving laser is on resonance. We show that in a detuned squeezed vacuum the standard Mellow features are each split into triplets. The central components of each triplet are weakly dependent on the squeezing phase but the sidebands strongly depend on the phase and can have dispersive or absorptive/emissive profiles. We also derive approximate analytical expressions for the spectral features and find that the multi-peak structure of the spectrum can be interpreted either via the eigenfrequencies of a generalized Floquet Hamiltonian or in terms of three-photon transitions between dressed stales involving a probe field photon and a correlated photon pair from the squeezed vacuum field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the coupled-system approach we calculate the optical spectra of the fluorescence and transmitted fields of a two-level atom driven by a squeezed vacuum of bandwidths smaller than the natural atomic linewidth. We find that in this regime of squeezing bandwidths the spectra exhibit unique features, such as a hole burning and a three-peak structure, which do not appear for a broadband excitation. We show that the features are unique to the quantum nature of the driving squeezed vacuum field and donor appear when the atom is driven by a classically squeezed field. We find that a quantum squeezed-vacuum field produces squeezing in the emitted fluorescence field which appears only in the squeezing spectrum while there is no squeezing in the total field. We also discuss a nonresonant excitation and find that depending on the squeezing bandwidth there is a peak or a hole in the spectrum at a frequency corresponding to a three-wave-mixing process. The hole appears only for a broadband excitation and results from the strong correlations between squeezed-vacuum photons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady-state resonance fluorescence spectrum of a two-level atom driven by a bichromatic field in a broadband squeezed vacuum is studied. When the carrier frequency of the squeezed vacuum is tuned to the frequency of the central spectral line, anomalous spectral features, such as hole burning and dispersive profiles, can occur at the central line. We show that these features appear for wider, and experimentally more convenient, ranges of the parameters than in the case of monochromatic excitation. ?he absence of a coherent spectral component at the central line makes any experimental attempt to observe these features much easier. We also discuss the general features of the spectrum. When the carrier frequency of the squeezed vacuum is tuned to the first odd or even sidebands, the spectrum is asymmetric and only the sidebands an sensitive to phase. For appropriate choices of the phase the linewidths or only the odd or even sidebands can be reduced. A dressed-stale interpretation is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fluorescence spectrum of a strongly driven two-level atom located inside an optical cavity damped by a narrow-bandwidth squeezed vacuum is studied. We use a dressed atom model approach, first applied to squeezed vacuum problems by Yeoman and Barnett, to derive the master equation of the system and discuss the role of the cavity and the squeezed vacuum in the narrowing of the spectral lines and the population trapping effect. We find that in the presence of a single-mode cavity the effect of squeezing on the fluorescence spectrum is more evident in the linewidths of the Rabi sidebands rather than in the linewidth of the central component. Even in the absence of squeezing, the cavity can reduce the linewidth of the central component almost to zero, whereas the Rabi sidebands can be narrowed only to some finite value. In the presence of a two-mode cavity and a two-mode squeezed vacuum the signature of squeezing is evident in the linewidths of all spectral lines. We also establish that the narrowing of the spectral lines is very sensitive to the detuning of the driving field from the atomic resonance. Moreover, we find that the population trapping effect, predicted for the broadband squeezed vacuum case, may appear in a narrow-bandwidth case only if the input squeezed modes are perfectly matched to the cavity modes and if there is non-zero squeezing at the Rabi sidebands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time evolution of the populations of the collective states of a two-atom system in a squeezed vacuum can exhibit quantum beats. We show that the effect appears only when the carrier frequency of the squeezed field is detuned from the atomic resonance. Moreover, we find that the quantum beats are not present for the case in which the two-photon correlation strength is the maximum possible for a field with a classical analog. We also show that the population inversion between the excited collective states, found for the resonant squeezed vacuum, is sensitive to the detuning and the two-photon correlations. For large detunings or a field with a classical analog there is no inversion between the collective states. Observation of the quantum beats or the population inversion would confirm the essentially quantum-mechanical nature of the squeezed vacuum. (C) 1997 Optical Society of America.